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Recent researches in econometrics and statistics have gained considerable insights into the use of instrumental variables (IVs) for causal
inference. A basic idea is that IVs serve as an experimental handle, the turning of which may change each individual’s treatment status
and, through and only through this effect, also change observed outcome. The average difference in observed outcome relative to that in
treatment status gives the average treatment effect for those whose treatment status is changed in this hypothetical experiment. We build on
the modern IV framework and develop two estimation methods in parallel to regression adjustment and propensity score weighting in the
case of treatment selection based on covariates. The IV assumptions are made explicitly conditional on covariates to allow for the fact that
instruments can be related to these background variables. The regression method focuses on the relationship between responses (observed
outcome and treatment status jointly) and instruments adjusted for covariates. The weighting method focuses on the relationship between
instruments and covariates to balance different instrument groups with respect to covariates. For both methods, modeling assumptions
are made directly on observed data and separated from the IV assumptions, whereas causal effects are inferred by combining observed-
data models with the IV assumptions through identification results. This approach is straightforward and flexible enough to host various
parametric and semiparametric techniques that attempt to learn associational relationships from observed data. We illustrate the methods by
an application to estimating returns to education.
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1. INTRODUCTION

Many scientific studies are concerned about the effects of
treatments and actions ceteris paribus (with all other things be-
ing equal). Although randomized experiments remain the gold
standard for research, observational studies are often conducted
because of ethical or practical considerations. In an observa-
tional study, treatment status is not controlled by the researcher
but can be related to various background variables. As a re-
sult, systematic differences in these variables can exist between
treated and untreated groups, and direct comparisons of ob-
served outcomes from the two groups are not appropriate. The
problem of selection bias is a major concern for causal infer-
ence from observational data.

The method of instrumental variables (IVs) has been known
in econometrics since the work of Wright (1928) and is widely
used in connection with structural equation models (Goldberger
1972). For illustration, consider the simple structural equation

Y = α + βD + ε,

where Y is observed outcome, D is treatment status, and ε is
a disturbance with mean 0. Here β indicates the causal effect
of D on Y , and D and ε can be correlated due to differential
selection into treatment. The conventional IV method is to find
some instrument Z that affects D but is uncorrelated with ε and
then solve

Ẽ[Y − α − βD] = 0 and Ẽ[Z(Y − α − βD)] = 0,

where Ẽ denotes sample average. For a binary Z, the IV estima-
tor of β is

Ẽ(Y|Z = 1) − Ẽ(Y|Z = 0)

Ẽ(D|Z = 1) − Ẽ(D|Z = 0)
,
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where Ẽ(Y|Z) and Ẽ(D|Z) are the sample averages in the groups
{Z = 1} and {Z = 0}. A nice interpretation is that it is the aver-
age difference in Y relative to that in D between the two instru-
ment groups.

Recently, substantial advances have been made toward a
modern IV framework. Imbens and Angrist (1994) and Angrist,
Imbens, and Rubin (1996) proposed a formulation of IV as-
sumptions in terms of potentially observable variables rather
than disturbances from structural equation models and showed
that the IV estimand gives the average treatment effect for those
whose treatment status can be manipulated by the instrument.
Heckman and Vytlacil (1999, 2001) examined the relation-
ship between various treatment parameters within a latent in-
dex model and showed how to use the relationship to identify
and bound the treatment parameters. These identification results
are nonparametric and applicable to general types of outcomes
and instruments; however, existing estimation methods address
some, but not a broad range of, applications. Hirano, Imbens,
Rubin, and Zhou (2000) and Little and Yau (1998) proposed
methods in the context of randomized experiments with binary
noncompliance. Barnard, Frangakis, Hill, and Rubin (2003),
Frangakis et al. (2004), and Yau and Little (2001) extended
the methods to allow an ordinal instrument and handle missing
data. Abadie (2003) and Abadie, Angrist, and Imbens (2002)
proposed methods for estimating average and quantile treat-
ment effects with a binary instrument. Carneiro, Heckman, and
Vytlacil (2003) suggested a local IV method under additive
structural models for continuous outcomes.

We propose two flexible estimation methods that accom-
modate various types of outcomes and instruments while
adjusting for background variables (or covariates). The regres-
sion method works with the treatment propensity score and
the outcome regression function and allows estimation of av-
erage potential outcomes for those whose treatment status can
be manipulated by instruments in subpopulations with fixed
covariates. The weighting method works with the instrument
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propensity score and allows estimation of average potential out-
comes for those whose treatment status can be manipulated by
instruments in the overall population. Subpopulation inferences
through weighting can be developed similarly. The two meth-
ods are parallel to regression adjustment and propensity score
weighting under no confounding given covariates (see Tan 2006
and references therein). A strategic point is that modeling as-
sumptions are made directly on observed data and separated
from causal assumptions concerned with complete data, so that
observed-data models can be built and checked (or learned) in
a straightforward manner. In this sense we regard the methods
as a learning approach, in contrast with a structural modeling
approach in which modeling and causal assumptions are made
simultaneously on complete data.

The rest of this article is organized as follows. Section 2
reviews the modern IV framework but strengthens Vytlacil’s
(2002) equivalence result. Section 3 discusses existing estima-
tion methods. Section 4 develops two estimation methods and
related asymptotic theory, and Section 5 gives an application
of the methods to estimating returns to education. Section 6
presents concluding remarks. All proofs are collected in the Ap-
pendix.

2. FRAMEWORK

We adopt Rubin’s (1974, 1977, 1978) potential outcomes
framework for causal inference. For each unit ω, let Y0 = Y0(ω)

be the response that would be observed if unit ω received treat-
ment “0” and Y1 = Y1(ω) if unit ω received treatment “1.”
The two variables are called potential outcomes. Let D = D(ω)

be the actual treatment status so that the observed outcome is
Y = (1 − D)Y0 + DY1. In addition, let X = X(ω) be a vector
of covariates whose values are not changed by application of
either treatment.

The individual causal effect is defined as a comparison of
Y0(ω) and Y1(ω), say the difference. The average treatment
effect over the population is ATE = E(Y1 − Y0). The average
treatment effect over a subpopulation {ω : X(ω) = x} is

ATE(x) = E(Y1 − Y0|X = x).

However, comparisons of observed outcomes between treated
and untreated groups such as E(Y|D = 1,X = x) − E(Y|D = 0,

X = x) do not necessarily identify causal effects. There are two
broad approaches to the identification problem for causal infer-
ence. We discuss briefly one approach, but focus on the second
approach as our main subject.

One approach relies on the unconfounded assignment mech-
anism

(Y0,Y1) ⊥ D |X; (1)

that is, potential outcomes (Y0,Y1) and treatment status D are
conditionally independent given covariates X. The primary ex-
ample is a randomized experiment (with full compliance). In an
observational study, the unconfounded assignment mechanism
is at best an assumption. It is necessary to include confound-
ing variables related to both treatment status and potential out-
comes such that the assumption holds approximately.

The second approach allows a confounded assignment mech-
anism by making use of IVs that affect treatment status but have
no direct effect on potential outcomes. These variables create

random variation in treatment status that is independent of po-
tential outcomes (as in a randomized experiment), even though
treatment status itself is not so. Finding good instruments is al-
ways a challenge in empirical research.

2.1 IV Assumptions

Imbens and Angrist (1994) and Angrist et al. (1996) for-
mulated IV assumptions in the potential outcomes framework.
Let Z = Z(ω) be a vector of IVs, and let Dz = Dz(ω) be the
treatment status that would be observed if Z(ω) were exter-
nally set to z. The basic IV assumptions are independence and
monotonicity:

(a) (Y0,Y1) ⊥ Z |X and Dz ⊥ Z |X.
(b) For any z, z′, and x, either Dz(ω) ≤ Dz′(ω) for all ω in

the set {X = x} or Dz(ω) ≥ Dz′(ω) for all ω in the set {X = x}.
A more elaborate formulation is to introduce potential out-
comes Yz if Z were externally set to z. The independence
assumption is implied by unconfoundedness similar to (1),
(Yz,Dz) ⊥ Z |X, and exclusion restriction, Yz = Yz′ if Dz = Dz′ .
In this case Yz can be treated as Y0 if Dz = 0 or Y1 if Dz = 1.
The monotonicity assumption says that all individuals with the
same X would switch (if so) from treatment “0” to “1,” not the
other way around, if Z were set to a level more favorable to
treatment “1.”

We keep conditioning on covariates X explicit. A population
version of monotonicity assumption is that for any z and z′,
either Dz(ω) ≤ Dz′(ω) for all ω or Dz(ω) ≥ Dz′(ω) for all ω.
It says that one level is always favorable than the other in the
population between any two instrument levels and rules out the
possibility that Dz ≤ Dz′ in one subpopulation {X = x} while
Dz ≥ Dz′ in another subpopulation {X = x′}.

Vytlacil (2002) showed that the independence and monoto-
nicity assumptions are equivalent to the assumptions of a latent
index model:

(a) Dz = 1{γ (X, z) ≥ U} for a function γ and a random
variable U.

(b) (Y0,Y1) ⊥ Z |X and U ⊥ Z |X.

Here 1{·} is the indicator function. The first assumption says
that the actual treatment status D is determined by the sign of
net utility γ (X,Z) − U and so is the potential treatment sta-
tus Dz if Z were externally set to z. We show that the latent
index assumptions (a) and (b) are equivalent to (a) and

(b′) (Y0,Y1) ⊥ Z |X and U ⊥ (X,Z)

by constructing transformations of γ and U that satisfy these
seemingly stronger conditions; see Proposition A.1 in the Ap-
pendix. This result implies that we can impose the normaliza-
tion that U has a uniform distribution on the interval [0, 1] and
hence γ (x, z) is given by the propensity score π(x, z) = P(D =
1|X = x,Z = z).

2.2 Treatment Parameters

In their IV framework, Imbens and Angrist (1994) and
Angrist et al. (1996) introduced a new treatment parameter. For
two different levels z and z′, the local average treatment effect
(LATE) over a subpopulation {X = x} is

LATE(x, z, z′) = E(Y1 − Y0|X = x,Dz < Dz′)
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if Dz ≤ Dz′ in the subpopulation. It is the average treatment
effect for those in the subpopulation whose treatment status
would be changed from “0” to “1” if Z were externally moved
from z to z′. The LATE can be identified by the IV estimand

E(Y|X = x,Z = z′) − E(Y|X = x,Z = z)
π(x, z′) − π(x, z)

. (2)

It is helpful to think of Z as an experimental handle. Turning of
the handle Z may change treatment status D and, through and
only through this effect, also change observed outcome Y . The
average difference in Y relative to that in D gives the average
treatment effect for those whose treatment status is changed in
this hypothetical experiment. Under the population monotonic-
ity assumption, the LATE over the population is

LATE(z, z′) = E(Y1 − Y0|Dz < Dz′)

if Dz ≤ Dz′ in the population. It is the average treatment effect
for those in the population whose treatment status would be
changed if Z were externally moved.

Within the latent index model, Heckman (1997) and
Heckman and Vytlacil (1999, 2001) introduced the marginal
treatment effect (MTE) parameter

MTE(x,u) = E(Y1 − Y0|X = x,U = u).

It is the average treatment effect for those in the subpopulation
who are on the margin of taking treatment “0” or “1” if Z were
externally set such that u = π(x, z). The MTE can be identi-
fied by the limit of the IV estimand as z′ → z (or the local IV
estimand),

∂E(Y|X = x,Z = z)
∂π(x, z)

. (3)

The MTE corresponds to the LATE for an infinitesimal change
in the instrument level. On the other hand, the ATE and LATE
are weighted averages of the MTE.

3. ESTIMATION: EXISTING METHODS

Let {ω1, . . . ,ωn} be an independent and identically dis-
tributed (iid) sample from the population. The data (Yi,Di,

Zi,Xi) = (Y(ωi),D(ωi),Z(ωi),X(ωi)) are iid from the joint
distribution of (Y,D,Z,X). In this section we discuss existing
estimation methods, with attention to their assumptions and ap-
plications.

Conventional methods using IVs are associated with struc-
tural equation models in econometrics and aimed to estimate
ATE(x) (see Wooldridge 2002, chap. 18, for a textbook ac-
count). For example, consider the following models:

(a) A structural model

Yd = αd + β�
d g(X) + εd,

where g is a vector of known functions, (αd,βd) is a vector
of parameters, and εd is a mean-0 disturbance independent of
(X,Z), d = 0,1.

(b) A selection model

D = 1{γ �f(X,Z) ≥ U},
where f is a vector of known functions, γ is a vector of parame-
ters, and U ∼ N(0,1) is a latent index independent of (X,Z).

The observed outcome is Y = µ(D,X;β) + [ε0 +
D(ε1 − ε0)], where µ(D,X;β) = α0 + (α1 −α0)D+β�

0 g(X)+
(β1 − β0)

�Dg(X). The implied propensity score is

P(D = 1|X,Z) = �[γ �f(X,Z)], (4)

where � denotes the standard normal distribution function. The
two models place parametric restrictions within the IV assump-
tions (Sec. 2).

The conventional IV method further assumes that E[ε0 +
D(ε1 − ε0)|X,Z] = 0 or, equivalently, E[Y − µ(D,X;β)|
X,Z] = 0, but does not require that model (4) be correctly spec-
ified. A two-step procedure is as follows:

1. Regress D on f(X,Z) and let �̂ = �(γ̂ �f).
2. Regress Y on (1,D,g(X),Dg(X)) with instruments (1, �̂,

g(X), �̂g(X)).

However, the mean-independence assumption holds if ε0 = ε1
(i.e., treatment effects are homogeneous given covariates) or
(ε1 − ε0) ⊥ D |X,Z (i.e., individuals select into treatment re-
gardless of idiosyncratic gains), but not so otherwise (Heckman
1997). Alternatively, Heckman’s (1979) method assumes that
(ε0, ε1,U) are jointly normal. A two-step procedure has the
same first step, but with the following second step:

2′. Regress Y on 1, D, g(X), Dg(X), (1 − D)φ̂/(1 − �̂), and
Dφ̂/�̂.

Various extensions have been proposed to relax the normality
assumption (see Vella 1998 for a review). The independence of
(ε0, ε1,U) and (X,Z) implies that

E(Y|D,X,Z) = µ(D,X;β)

+ (1 − D)λ0(�(γ �f)) + Dλ1(�(γ �f)), (5)

where λd(�) = E(εd|D = d,X,Z) is unknown. However, the
intercepts (α0, α1) are absorbed into (λ0, λ1), and ATE(x) can-
not be identified in general (Heckman 1990).

Carneiro et al. (2003) considered the same models for
P(Yd|X) and P(D|X,Z), and suggested a local IV method for
estimating MTE(x,u). They fitted the regression

E(Y|X,Z) =α0 + (α1 − α0)�(γ �f) + β�
0 g(X)

+ (β1 − β0)
��(γ �f)g(X) + λ(�(γ �f)) (6)

and obtained MTE(x,�) by differentiation with respect to �,
where λ(�) = (1 − �)λ0(�) + �λ1(�) is unknown. The
LATE(x, z, z′) can be identified, but ATE(x) cannot be iden-
tified unless �(γ �f) takes values arbitrarily close to 0 and 1 at
fixed X = x due to variation in Z.

The foregoing methods allow multiple ordinal and continu-
ous instruments but are restricted to additive structural models
for continuous outcomes. Other methods are applicable more
generally to dichotomous and nonnegative outcomes but are
tailored to a single ordinal instrument. Consider a randomized
experiment with binary noncompliance, and let Z be random
assignment and D be treatment status. It is convenient to de-
fine C = complier, never-taker, always-taker, and defier for
(D0,D1) = (0,1), (0,0), (1,1), and (1,0). Exclusion restric-
tion says that randomization by itself does not affect each in-
dividual’s outcome, and the monotonicity assumption requires
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that there be no defiers. Hirano et al. (2000), Imbens and Rubin
(1997a), and Little and Yau (1998) chose to fully parameterize

P(Yd|C,X) × P(C|X),

and developed likelihood and Bayesian methods using Ex-
pectation-Maximization and Data-Augmentation algorithms.
Barnard et al. (2003), Frangakis et al. (2004), and Yau and Lit-
tle (2001) extended the methods to allow an ordinal instrument
and handle missing data.

Abadie (2003) also considered the case of a binary instru-
ment. He established identification results for expectations of
(Y,D,X) over compliers {D0 < D1} and proposed a two-step
estimation procedure: (a) estimate P(Z = 1|X) under a flexi-
ble parametric model and (b) estimate E(Yd|D0 < D1,X) un-
der a parametric model through a weighting scheme. Abadie
et al. (2002) suggested a similar two-step procedure in which
the quantiles of P(Yd|D0 < D1,X) are estimated under a para-
metric model.

4. ESTIMATION: NEW METHODS

We distinguish two kinds of assumptions for causal infer-
ence. One kind is causal assumptions, as discussed in Sec-
tion 2. Causal assumptions are nonparametric (not testable or
only weakly testable from observed data) but are necessary for
causal interpretations to be made. The other kind is model-
ing assumptions, such as functional form or distributional re-
strictions. Modeling assumptions are parametric (testable from
observed data) but are imposed to avoid the curse of dimension-
ality in the presence of many covariates.

The methods described in Section 3 represent a structural
modeling approach. Modeling assumptions are made on the
distribution of complete data, such as P(Yd|X) or P(Yd|C,X),
within the IV assumptions. Estimation is accomplished by
exploiting implications of the complete-data distribution on
observed data. We take a different approach and develop esti-
mation methods by working directly with the observed-data dis-
tribution and then inferring causal effects in combination with
the IV assumptions.

The observed-data likelihood is a product of several factors,
n∏

i=1

[
P(Yi,Di|Xi,Zi) × P(Zi|Xi) × P(Xi)

]
.

This factorization reflects the idea that Z is an experimental
handle conditional on X, and (Y,D) are both responses. We
propose two different methods depending on which factor is pa-
rameterized. For the regression method, modeling assumptions
are made on

P(Y,D|X,Z) = P(Y|D,X,Z) × P(D|X,Z),

and subpopulation LATE and average potential outcomes are
estimated. An example is models (4) and (5) in the case of con-
tinuous outcomes. Alternatively, modeling assumptions can be
made on P(D|X,Z) and P(Y|X,Z) as in models (4) and (6).
But a disadvantage of this approach is that only subpopula-
tion LATE and no average potential outcomes can be estimated.
For the weighting method, modeling assumptions are made on
P(Z|X), and population LATE and average potential outcomes
are estimated. In future work we plan to extend the weighting
method to subpopulation inferences in which subpopulations
are defined in terms of some selected rather than all available
covariates.

4.1 Regression Method

In the regression method we work with the treatment propen-
sity score and the outcome regression function,

P(D = 1|X,Z) = π(X,Z)

and

E(Y|D,X,Z) = η(D,X,π(X,Z)),

where E(Y|D = d,X = x,Z = z) = E(Y1|U ≤ π(x, z),X = x)

if d = 1 or E(Y0|U > π(x, z),X = x) if d = 0 is a function of
d, x, and π(x, z) due to the IV assumptions (Sec. 2). Theorem 1
shows that subpopulation and population LATE can be identi-
fied from the knowledge of π and η. In fact, the conditional
expectation of each potential outcome, not just the difference,
can be identified. As a result, other causal comparisons can be
identified, such as the odds ratio of two binary potential out-
comes for those whose treatment status can be affected by a
change in Z. Similar points have been made by Abadie (2002),
Frangakis et al. (2004), and Imbens and Rubin (1997b).

Theorem 1. (a) If the IV independence assumption holds,
then, for each z,

E(Y1|X = x) = πη(1,x,π) + (1 − π)E(Y1|Dz = 0,X = x)

and

E(Y0|X = x) = πE(Y0|Dz = 1,X = x) + (1 − π)η(0,x,π).

(b) If the IV assumptions hold, then

E(Y1|Dz < Dz′,X = x) = π ′η(1,x,π ′) − πη(1,x,π)

π ′ − π

and

E(Y0|Dz < Dz′,X = x)

= (1 − π)η(0,x,π) − (1 − π ′)η(0,x,π ′)
π ′ − π

,

where π < π ′, π = π(x, z), and π ′ = π(x, z′).
(c) If, further, the population monotonicity assumption

holds, then

E(Y1|Dz < Dz′) = E[π ′η(1,X,π ′)] − E[πη(1,X,π)]
E(π ′) − E(π)

and

E(Y0|Dz < Dz′)

= E[(1 − π)η(0,X,π)] − E[(1 − π ′)η(0,X,π ′)]
E(π ′) − E(π)

,

where π < π ′, π = π(X, z), and π ′ = π(X, z′).
It remains to estimate the regression functions π and η from

observed data. This task is familiar, and various regression tech-
niques can be used. For concreteness, consider the generalized
linear models

P(D = 1|X,Z) = π[γ �f(X,Z)] (7)

and

E(Y|D = d,X,Z) = η[αd + β�
d g(X) + ρ�

d λ(π(X,Z;γ ))],
(8)
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where f, g, and λ are vectors of known functions and γ and
ψ = (αd,βd,ρd)d=0,1 are vectors of parameters. For model (8),
spline functions on [0, 1] can be included in λ, and interac-
tions between X and π(X,Z) can be added. The models ignore
part of the restrictions fully implied by the IV assumptions on
observed data, such as the fact that π(x, z)P(Y|D = 1,X = x,
Z = z) is dominated by π(x, z′)P(Y|D = 1,X = x,Z = z′) with
a Radon–Nikodym derivative of at most 1 if π(x, z) < π(x, z′).
A two-step procedure is as follows:

Procedure 1.
1. Regress D on f (X,Z) with link function π by solving

Ẽ[s1(γ )] = 0 for γ̂ , where

s1(γ ) = ∂π

∂γ

D − π(γ �f)
π(γ �f)(1 − π(γ �f))

,

and let π̂ = π(γ̂ �f).
2. Regress Y on 1, D, g(X), D g(X), λ(π̂), and Dλ(π̂) with

link function η by solving Ẽ[s2(ψ; γ̂ )] = 0 for ψ̂ , where

s2(ψ;γ ) = ∂η

∂ψ
W−1(Y − η

[
α0 + (α1 − α0)D

+ β�
0 g + (β1 − β0)

�Dg

+ ρ�
0 λ(π) + (ρ1 − ρ0)

�Dλ(π)
])

,

and W = W(D,X,Z) is a known function.

The next theorem shows the asymptotic behaviors of (γ̂ , ψ̂).
Throughout, “�” denotes a difference of order op(n−1/2).

Theorem 2. Under regularity conditions,

γ̂ − γ � V−1
1 Ẽ[s1(γ )]

and

ψ̂ − ψ � V−1
2 Ẽ[s2(ψ;γ )] − V−1

2 LV−1
1 Ẽ[s1(γ )],

where V1 = −E[∂s1(γ )/∂γ ], V2 = −E[∂s2(ψ;γ )/∂ψ], and
L = −E[∂s2(ψ;γ )/∂γ ].

The fitted values π̂ and η̂ can be substituted in Theorem 1 to
estimate causal effects. The LATE at X = x can be estimated by

Ê(Y1 − Y0|Dz < Dz′,X = x) = Ê(Y|x, z′) − Ê(Y|x, z)

Ê(D|x, z′) − Ê(D|x, z)
,

and the MTE can be estimated by the derivative of Ê(Y|x, z)
with respect to π̂(x, z), where Ê(Y|x, z) = π̂ η̂(1,x, π̂) + (1 −
π̂)η̂(0,x, π̂) and Ê(D|x, z) = π̂(x, z). The estimators are sam-
ple versions of (2) and (3), although E(Y|X,Z) is derived from
E(Y|D,X,Z) and E(D|X,Z) rather than modeled directly. The
population LATE can be estimated by

Ê(Y1 − Y0|Dz < Dz′) = Ẽ[Ê(Y|X, z′)] − Ẽ[Ê(Y|X, z)]
Ẽ[Ê(D|X, z′)] − Ẽ[Ê(D|X, z)] . (9)

This estimator extends that of Angrist et al. (1996) by allowing
covariates. It has a similar form of difference relative to differ-
ence; its numerator gives the difference in “outcome,” whereas
its denominator gives the difference in “treatment,” between the
two instrument groups {Z = z} and {Z = z′} after adjusting for
covariates through regression.

There are a couple of subtle issues. First, if π < π ′, then
Ê(Y1|X = x,Dz < Dz′) lies to the same side of η̂(1,x,π ′) as
η̂(1,x,π ′) lies to η̂(1,x,π), and Ê(Y0|X = x,Dz < Dz′) lies to
the same side of η̂(0,x,π) as η̂(0,x,π) lies to η̂(0,x,π ′). The
estimators can lie outside the range of Y due to sampling vari-
ability, even though inside the range asymptotically. This pos-
sibility is tied to the fact that models (7) and (8) are not fully
embedded in the IV assumptions, whereas estimation is based
on nonparametric identification results. The confidence inter-
vals are expected to at least intersect the range of Y . Otherwise,
models (7) and (8) may be misspecified or the IV assumptions
may be violated, and both need to be reexamined. This feature
is of diagnostic value because the risk of misspecification of
models for π and η and incorrectness of the IV assumptions is
empirically exposed.

The second issue concerns reduction of a vector of instru-
ments to a scalar. The propensity score π(X,Z) seems a natural
candidate because E(Y|D,X,Z) depends on Z only through
π(X,Z) (see Carneiro et al. 2003). However, a change in Z
leads to covariate-specific changes in π(X,Z), and, conversely,
a change in π(X,Z) requires simultaneous changes in Z de-
pending on covariates. The reduction of Z to π(X,Z) is ap-
propriate for subpopulation inferences at fixed X, but not at
aggregate levels. We propose a solution related to the idea of
sufficient statistics. A scalar or a vector � (Z) is called a suf-
ficient reduction of Z if π(X,Z) is a function of X and � (Z)

only. Of course, Z is a sufficient reduction of itself. If the linear
predictor γ �f(X,Z) is of the form γ �

1 f1(X) + γ �
2 f2(Z), then

γ �
2 f2(Z) is a sufficient reduction. Two levels of Z are equiva-

lent in changing treatment status if they correspond to the same
value of a sufficient reduction. This kind of sufficient reduction
is useful for the weighting method in Section 4.2.

Estimation of E(Yd|X = x) requires additional consider-
ations. If there exists z such that π(x, z) = 0 or 1, then
E(Y0|X = x) = η(0,x,0) or E(Y1|X = x) = η(1,x,1). The
values η̂(0,x,0) and η̂(1,x,1) are extrapolations unless there
are units with π(X,Z) close to 0 and 1 in the subpopulation
{X = x}. Heckman and Vytlacil (1999, 2001) discussed the
following bounding analysis (see also Balke and Pearl 1997;
Manski 1990). Suppose that π(X,Z) is bounded between (0≤)
π−

x and π+
x (≤1) and (Y0,Y1) are between y−

x and y+
x given

X = x. Then E(Yd|X = x) can be bounded by

π+
x η̂(1,x,π+

x ) + (1 − π+
x )y−

x

≤ E(Y1|X = x) ≤ π+
x η̂(1,x,π+

x ) + (1 − π+
x )y+

x

and

(1 − π−
x )η̂(0,x,π−

x ) + π−
x y−

x

≤ E(Y0|X = x) ≤ (1 − π−
x )η̂(0,x,π−

x ) + π−
x y+

x .

The source for lack of identification is E(Y1|X = x,U > π+
x )

and E(Y0|X = x,U ≤ π−
x ). To quantify differences between

unidentifiable and identifiable components, we introduce a sen-
sitivity parameter � such that

∣∣E(Y1|X = x,U > π+
x ) − E(Y1|X = x,U ≤ π+

x )
∣∣ ≤ �

and
∣∣E(Y0|X = x,U ≤ π−

x ) − E(Y0|X = x,U > π−
x )

∣∣ ≤ �.
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Then E(Y1|X = x) can be bounded between η̂(1,x,π+
x ) ± (1 −

π+
x )�, and E(Y0|X = x) between η̂(0,x,π−

x ) ± π−
x �. For a

binary Z, if π(x,0) ≤ π(x,1), then π−
x and π+

x can be approx-
imated by π̂ (x,0) and π̂ (x,1) in the bounds.

4.2 Weighting Method

In the weighting method, we work with the conditional dis-
tribution

P(Z = z|X = x) = p(z|x)

as a probability mass or density function, assumed to be strictly
positive. For a binary Z, p(1|x) is the conditional probabil-
ity of receiving instrument “1” given covariates X = x, and
can be viewed as the instrument propensity score. This view-
point agrees with the idea that Z is an experimental handle and
suggests that expectations of instrument potential outcomes,
such as Dz, DzY1, and (1 − Dz)Y0, can be identified through
weighting using the instrument propensity score. The popula-
tion LATE can be determined from these expectations. Theo-
rem 3 gives the general results for identification.

Theorem 3. Let F(z) = P(Dz = 1), G1(z) = E(Y1|Dz = 1),
and G0(z) = E(Y0|Dz = 0).

(a) If the IV independence assumption holds, then

E

[
p∗(Z)

p(Z|X)
ϕ(Z)(D − F(Z))

]
= 0,

E

[
p∗(Z)

p(Z|X)
ϕ(Z)D(Y − G1(Z))

]
= 0,

and

E

[
p∗(Z)

p(Z|X)
ϕ(Z)(1 − D)(Y − G0(Z))

]
= 0,

where p∗ (>0) is a probability mass or density function and ϕ is
an arbitrary function.

(b) If the population monotonicity assumption holds, then

E(Y1|Dz < Dz′) = F(z′)G1(z′) − F(z)G1(z)
F(z′) − F(z)

and

E(Y0|Dz < Dz′) = (1 − F(z))G0(z) − (1 − F(z′))G0(z′)
F(z′) − F(z)

,

where F(z) < F(z′) and hence Dz(ω) ≤ Dz′(ω) for all ω.

Let us look at again the case where Z is binary. The instru-
ment propensity score p(1|x) can be estimated under a logit
regression model

P(Z = 1|X) = exp(ν�a(X))

1 + exp(ν�a(X))
. (10)

The values of F, G1, and G0 can be estimated by solving
the equations with suitable ϕ in Theorem 3(a). Taking ϕ(z) =
1{z = 1} gives

F̂(1) = Ẽ

[
Z

p̂(1|X)
D

]/
Ẽ

[
Z

p̂(1|X)

]
,

Ĝ1(1) = Ẽ

[
Z

p̂(1|X)
DY

]/
Ẽ

[
Z

p̂(1|X)
D

]
,

and

Ĝ0(1) = Ẽ

[
Z

p̂(1|X)
(1 − D)Y

]/
Ẽ

[
Z

p̂(1|X)
(1 − D)

]
.

Taking ϕ(z) = 1{z = 0} gives F̂(0), Ĝ1(0), and Ĝ0(0). The
estimators are inversely instrument propensity score-weighted
averages. By Theorem 3(b), the average causal effect for com-
pliers {D0 < D1} can be estimated by

Ê(Y1 − Y0|D0 < D1) =
Ẽ
[ Z

p̂(1|X)
Y
] − Ẽ

[ 1−Z
1−p̂(1|X)

Y
]

Ẽ
[ Z

p̂(1|X)
D

] − Ẽ
[ 1−Z

1−p̂(1|X)
D

] . (11)

This estimator extends that of Angrist et al. (1996) by allowing
covariates. It has a similar form of difference relative to differ-
ence; its numerator gives the difference in “outcome,” whereas
its denominator gives the difference in “treatment,” between the
two instrument groups {Z = 1} and {Z = 0} after adjusting for
covariates through weighting.

The estimators (9) and (11) represent two approaches us-
ing IVs: regression and weighting. These two approaches are
parallel to those in the case of unconfounded assignment mech-
anism (1) (see Tan 2006 and references therein). With this
connection, various estimation techniques for unconfounded as-
signment mechanisms can be borrowed here. In particular, it is
useful to incorporate outcome regression (Sec. 4.1) into propen-
sity score weighting. For (11), the first term in the numerator
can be replaced by

Ẽ

[
Z

p̂(1|X)
D

]
− Ẽ

[(
Z

p̂(1|X)
− 1

)
Ê(D|X,1)

]
,

the first term in the denominator can be replaced by

Ẽ

[
Z

p̂(1|X)
Y

]
− Ẽ

[(
Z

p̂(1|X)
− 1

)
Ê(Y|X,1)

]
,

and the remaining terms can be replaced similarly. The result-
ing estimator of LATE is locally efficient; that is, it achieves
the semiparametric variance bound under model (10) if models
(7) and (8) are correct. Moreover, it is doubly robust; that is, it
remains consistent and asymptotically normal if model (10) or
models (7) and (8) are correct.

The method can be extended to the case where Z is polyto-
mous with k levels. Consider the multinomial logit model

P(Z = z|X) = exp(ν�
z a(X))

∑k−1
j=0 exp(ν�

j a(X))
, (12)

where a is a vector of known functions and ν = (ν0,ν1,

. . . ,νk−1) are vectors of parameters with ν0 = 0 fixed. The val-
ues of F, G1, and G0 can be estimated by taking ϕ(z) = 1{z = j}
for 0 ≤ j ≤ k − 1, that is, using the saturated models. Neverthe-
less, it is sometimes adequate to retain a few low-order polyno-
mial terms. Consider the models

P(Dz = 1) = F[θ�c(z)] (13)

and

E(Yd|Dz = d) = G[ϑ�
d c(z)], (14)

where c is a vector of known functions such as contrasts, and
θ and ϑ = (ϑ0,ϑ1) are vectors of parameters. A two-step pro-
cedure is as follows:
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Procedure 2.
1. Regress Z on X by solving Ẽ[s(ν)] = 0 for ν̂, where

s(ν) = (
1{Z = j} − p( j|X; ν)

)
1≤j≤k−1a(X).

2. Regress D on Z, and Y on (D,Z) by solving Ẽ[τ 1(θ;
ν̂)] = 0 and Ẽ[τ 2(ϑ; ν̂)] = 0 for (θ̂ , ϑ̂), where

τ 1(θ; ν) = p∗(Z)

p(Z|X)

∂F

∂θ

D − F(θ�c)

F(θ�c)(1 − F(θ�c))
,

τ 2(ϑ; ν) = p∗(Z)

p(Z|X)

∂G

∂ϑ

× W−1(Y − G
[
ϑ�

0 c + (ϑ1 − ϑ0)
�Dc

])
,

and W = W(D,Z) is a known function.

Step 2 is straightforward except that observations are in-
versely weighted by instrument propensity scores. The next the-
orem shows the asymptotic behaviors of (θ̂ , ϑ̂).

Theorem 4. Under regularity conditions,

θ̂ − θ � V−1
1 [Ẽ(τ 1) − E(τ 1s)var−1(s)Ẽ(s)]

and

ϑ̂ − ϑ � V−1
2 [Ẽ(τ 2) − E(τ 2s)var−1(s)Ẽ(s)],

where V1 = −E[∂τ 1(θ; ν)/∂θ ] and V2 = −E[∂τ 2(ϑ; ν)/∂ϑ].
Propensity score weighting can be augmented by outcome

regression to achieve better efficiency and robustness. Let
h = h(x, z) be a vector of functions. A basic result is that
E[ξ(X,Z;h)] = 0, where

ξ(X,Z;h) = p∗(Z)

p(Z|X)
h(X,Z) −

∫
h(X, z)p∗(z)dz.

For h(x, z) = 1{z = j}h(x), the result says that the weighted av-
erage of h(X) in the jth instrument group is equal to the un-
weighted average in the population,

E

[(
1{Z = j}
p( j|X)

− 1

)
h(X)

]
= 0.

A two-step procedure taking advantage of such inherent con-
straints is as follows:

Procedure 3.
1. Same as Procedure 2.
2. Solve Ẽ[τ †

1(θ; ν̂)] = 0 and Ẽ[τ †
2(ϑ; ν̂)] = 0 with

τ
†
1 = τ 1 − b1ξ(X,Z;h1)

and

τ
†
2 = τ 2 − b2ξ(X,Z;h2),

where h1,h2 are vectors of functions and b1,b2 are real
matrices.

Asymptotic behaviors are the same as those in Theorem 4,
with (τ

†
1,τ

†
2) in place of (τ 1,τ 2).

A remaining question is how to specify (h1,h2) and (b1,b2)

for this procedure. The estimating functions (τ 1,τ 2) are of the
form

τ = p∗(Z)

p(Z|X)
ϕ(Z)ε(Y,D,Z).

Consider the choice h(x, z) = ϕ(z)Ê[ε(Y,D,Z)|X = x,Z = z],
where Ê(ε|X = x,Z = z) is estimated from models (7) and (8).
There are at least two ways to choose b. One way is to fix
b = identity matrix. The resulting estimator of LATE achieves
the semiparametric variance bound under model (12) if models
(7) and (8) are correct and models (13) and (14) are saturated,
and remains consistent if model (12) is misspecified but mod-
els (7) and (8) are correct (see van der Laan and Robins 2003).
Another way is to use the coefficient b = Ẽ−1(ξζ�)Ẽ(ξτ�),
where ζ = p∗(Z)p−1(Z|X)h(X,Z). The resulting estimator is
locally efficient and doubly robust as that with fixed b, and can
be more efficient because of regression adjustment if models
(7) and (8) are misspecified (see Tan 2006).

The weighting method can in principle be extended to a
continuous scalar instrument. It is necessary to estimate the
conditional density of the instrument given covariates. A full
investigation of related issues goes beyond the scope of this ar-
ticle. Finally, a vector of discrete and continuous instruments
can be replaced by a lower-dimensional, sometimes a scalar,
sufficient reduction discussed in Section 4.1. A discretization
of this equivalent instrument can then be used for data analysis;
see Section 5.2.

5. AN APPLICATION

Over the years there has been considerable interest in the
study of the causal relationship between education and earn-
ings (see Griliches 1977; Card 2001). A fundamental difficulty
is that education levels are not randomly assigned, but rather
are self-selected by individuals. In this section we analyze the
sample from the National Longitudinal Survey (NLS) of Young
Men given by Card (1995) and illustrate the value of the new
methods.

The NLS of Young Men began in 1966 with 5,525 men
age 14–24 and continued with follow-up interviews through
1981. Card’s (1995) analytic sample comprises 3,010 men with
valid education and wage responses in the 1976 interview. In
his analysis, the rate of return to schooling is considered in the
framework of Mincer’s (1974) equation

Y = α + βS + δ1A + δ2A2 + ε,

where Y is the log of hourly earnings, S is years of school-
ing, A is years of experience after schooling (taken to be
age − S − 6), and ε is a disturbance. Other variables, such as
family background characteristics, can be added to the equa-
tion. However, it is subtle to adjust for posttreatment variables
measured in 1976 whose values can be affected by the level of
education (see Frangakis and Rubin 2002). Card’s (1995) mod-
els include dummy variables for residence in the South and in
a metropolitan area (SMSA) in 1976. We exclude these 1976
location variables from our analysis.

To focus on main issues, we consider education after high
school as the treatment (D = 1{S > 12}) and log earnings at
a fixed age, say 30, as the outcome, taking into account that
1 more year of schooling results in 1 less year of experi-
ence. But data on this outcome are not fully available from the
NLS interviews. We construct surrogate data by using Mincer’s
equation to separate schooling and experience effects. Specifi-
cally, we fit the regression model αJ + δ1A + δ2A2 for the log
earnings Y in 1976, where J is a factor for the six intervals of S
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divided by 8, 10, . . . , 16, and define log earnings at age 30 as
(α̂J + δ̂1a + δ̂2a2) + (Y − Ŷ) with a = 16, 14, . . . , 6 for the six
education levels. In our analysis, Y refers to this surrogate out-
come. The covariates X include a race indicator, indicators for
nine regions of residence and for residence in SMSA in 1966,
mother’s and father’s years of schooling and indicators for miss-
ing values, indicators for living with both natural parents, with
one natural parent and one step parent, and with mother only at
age 14, and the Knowledge of World of Work (KWW) score in
1966 and a missing indicator.

The instruments Z represent an indicator for a 4-year college
in the local labor market (“nearc”) and the number of siblings
(“sib”) in 1966. The IV independence assumption postulates
that potential earnings and potential education status are inde-
pendent of the instruments given the covariates, and that poten-
tial earnings are not affected by the instruments once education
status is taken into account. The IV monotonicity assumption
postulates that every young man, if changing his educational
decision, would go for postsecondary education, not the other
way around, if a college were present nearby or the number
of siblings were decreased. These assumptions are disputable.
For example, presence of a college may be associated with
community-level characteristics that affect earnings other than
through education. (See Card 1995, p. 213, for a discussion on
reasons why college proximity may not be a legitimate instru-
ment in the study.)

5.1 Regression Method

First, we fit a logit regression model for the education sta-
tus D given the covariates X and the instruments Z. This step is
the same as the usual propensity score estimation and involves
a process of fitting a model, checking the balance of covariates
between the treated and the untreated, and refining the model
(see Rosenbaum and Rubin 1984; Tan 2006). The fitted propen-
sity score from the final model is

logit P̂(D = 1|X,Z) = .36 (.11) nearc − .092 (.019) sib + · · · ,
with standard errors given in parentheses. The constant term
and linear, quadratic, and interaction terms of X are not shown.
The decision of attending postsecondary education is positively
affected by the presence of a nearby college and a decrease
in the number of siblings. The fitted propensity scores are be-
tween .052 and .997 (median, .679) for the treated and between
.006 and .982 (median .326) for the untreated.

Next, we fit separate linear regression models in the two
groups {D = 1} and {D = 0} for the log earnings Y given the
covariates X and the instruments Z or, equivalently, given the
covariates X and the propensity score π(X,Z). Both final mod-
els include a cubic spline of π(X,Z) and the linear terms of X,
and the model for the treated also includes one interaction term
of X. Figure 1 shows Ê(Y|D = 1,X,Z), Ê(Y|D = 0,X,Z), and
Ê(Y|X,Z) as functions of π(X,Z) over the unit interval with
X fixed at white, New England region, SAMA, 12 years of
mother’s and father’s schooling, living with both natural par-
ents, and KWW score of 35. The function Ê(Y|X,Z) increases
along the direction of Z such that π(X,Z) increases. In other
words, better levels of the instruments for postsecondary educa-
tion are associated with higher earnings after adjusting for the

(a) (b)

Figure 1. Fitted Log Earnings for a Subpopulation Defined in the
Text. (a) Ê(Y |D = 1, X , Z ) and 95% confidence bands ( ——) and
Ê(Y |D = 0, X , Z ) and 95% confidence bands ( - - - - -). (b) Ê(Y |X , Z )
and 95% confidence bands.

covariates, suggesting a positive return to postsecondary educa-
tion because the instruments are not supposed to affect earnings
directly.

Table 1 presents LATE estimates for the subpopulation with
the foregoing fixed X. Over this subpopulation, the estimated
LATE is .15 with standard error .11 for those whose postsec-
ondary education status would be changed from “no” to “yes”
if the instruments were moved from (0,0) to (1,0). The LATE
estimate is larger for those who would choose postsecondary
education even at the less favorable level (0,4), due mainly to
their lower potential earnings without postsecondary education.
The differential effects can also be examined from the graphs of
Ê(Y1|X,U), Ê(Y0|X,U), and Ê(Y1 − Y0|X,U) in Figure 2. The
LATE is estimated by the average height under the MTE curve
Ê(Y1 − Y0|X,U) over the interval between, for example, .51
and .60 for Z moved from (0,0) to (1,0) and .30 and .42 for Z
moved from (0,10) to (0,4). The estimated return to postsec-
ondary education becomes larger for those who would choose
it even in a less desirable situation, such as no college nearby
or more siblings in the family. This increase in return is due to
the lower potential earnings without postsecondary education
rather than the higher potential earnings with postsecondary ed-
ucation.

For the foregoing subpopulation, the fitted propensity score
can take values between .17 and .60, corresponding to the low-
est and highest levels of the instruments, taken to be (0,18)
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Table 1. LATE Estimation for a Subpopulation

(nearc, sib) → (nearc, sib)′

(0, 10) →(0, 4) (0, 4) →(0, 0) (0, 0) →(1, 0) (0, 10) →(1, 0)

Dz < Dz′ .125 .091 .088 .304
(.026) (.020) (.027) (.050)

Y1 − 6 .440 .471 .487 .462
(.068) (.073) (.090) (.069)

Y0 − 6 .251 .320 .342 .298
(.104) (.078) (.062) (.080)

Y1 − Y0 .188 .151 .145 .165
(.127) (.108) (.110) (.106)

NOTE: The subpopulation is defined in the text. The fitted propensity scores are .295, .420, .511, and .599 for (nearc, sib) at (0, 10), (0, 4),
(0, 0), and (1, 0).

and (1,0). The maximum number of siblings is 18 in the over-
all sample without restriction to those with the fixed X. There
is no information on Y1 for those who would still not attend
postsecondary education when Z were (1,0) (i.e., U > .60), or
on Y0 for those who would even attend postsecondary education
when Z were (0,18) (i.e., U ≤ .17). We consider two ways of
assessing the ATE. By extrapolation, E(Y1|X) and E(Y0|X) are
estimated to be 6.46 and 6.17, and the ATE .28 with standard
error .12. By means of bounding with the sensitivity parame-
ter � = .15, E(Y1|X) and E(Y0|X) are bounded in the inter-
vals [6.36, 6.48] and [6.23, 6.30], and the ATE [.06, .25] with
standard errors .04 for the endpoints. Here it is assumed that

(a) (b)

Figure 2. Potential Log Earnings for a Subpopulation. (a) Ê(Y1|X , U)
and 95% confidence bands ( ——) and Ê(Y0|X , U) and 95% confidence
bands ( - - - - -). (b) Ê(Y1 − Y0|X , U) and 95% confidence bands.

E(Y1|X,U > .60) can differ from E(Y1|X,U ≤ .60) by as much
as .15, and so can E(Y0|X,U ≤ .17) from E(Y0|X,U > .17).

5.2 Weighting Method

The fitted (treatment) propensity score suggests that a college
nearby and three fewer siblings are approximately equivalent in
increasing the probability of postsecondary education. A scalar
reduction of the two instruments jointly is (3 nearc − sib); see
Section 4.1. Furthermore, we define a four-level instrument, Z∗,
from this reduction: Z∗ = 4 if (nearc = 1, sib < 3), Z∗ = 3
if (nearc = 0, sib < 3) or (nearc = 1, 3 ≤ sib < 6), Z∗ = 2
if (nearc = 0, 3 ≤ sib < 6) or (nearc = 1, 6 ≤ sib < 9), and
Z∗ = 1 otherwise. The average log earnings are 6.05, 6.29,
6.37, and 6.46, and the postsecondary education proportions are
.23, .40, .50, and .66 for Z∗ = 1,2,3,4. If Z∗ were completely
randomized, then the LATE would be 1.39, .81, and .56 for the
three consecutive level changes (1 → 2, etc.). We allow Z∗ to
be randomized within the covariates.

First, we fit a multinomial logit model for the instrument Z∗
given the covariates X. If Z∗ is considered a treatment factor,
then this step is the same as the usual propensity score es-
timation and involves checking the balance of covariates be-
tween the levels of Z∗. The final model includes the linear terms
of X and four interaction terms. Figure 3 shows the raw and
weighted histograms of the KWW scores for the first and fourth
instrument groups. The raw histogram is shifted to the right,
and hence the KWW scores are higher for the first instrument
group, whereas the weighted histograms agree approximately
with each other. The covariates are balanced reasonably well
between the instrument groups after weighting. Figure 4 shows
the weighted proportion of D, the weighted average of Y , and
those of Y within {D = 1} and {D = 0} for each instrument
group. Both the weighted proportion of D and the weighted av-
erage of Y increase as the level of Z∗ increases, suggesting a
positive return to postsecondary education.

Next, we fit weighted linear regression models for the log
earnings Y given the linear term of Z∗ within {D = 1} and
given the linear and quadratic terms of Z∗ within {D = 0},
and a weighted logistic regression model for the education sta-
tus D given the linear term of Z∗. Table 2 presents population
LATE estimates, including regression-based estimates (reg), in-
strument propensity score-based estimates (ips), and estimates
combining both (comb). For example, the three estimates of
LATE are .25, .22, and .22 with standard errors .084, .30, and
.29 for those whose postsecondary education status would be
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(a) (b)

Figure 3. Balance Checking Between Instrument Groups. The
(a) raw histograms and (b) weighted histograms for the first ( ——) and
fourth ( - - - - -) instrument groups.

changed from “no” to “yes” if the instrument level were moved
from 3 to 4 in the population. Considerable standard errors are
associated with the estimates through weighting, because the
instrument groups do not overlap sufficiently in certain regions
of the covariates. The estimates through regression have smaller
standard errors but rely on extrapolation implicitly made in the
regression models. All of the LATE estimates appear to increase
for those who would choose postsecondary education even at
a lower instrument level, due mainly to their reduced potential
earnings if without postsecondary education. This common fea-
ture is in agreement with the results in Section 5.1.

(a) (b)

Figure 4. Weighted Log Earnings and Education. (a) The weighted
averages of Y and 95% confidence intervals within {D = 1} ( ——) and
{D = 0} ( - - - - -). (b) The weighted proportion of D and the weighted
average of Y and 95% confidence intervals.

6. SUMMARY

We build on the modern IV framework and develop two
estimation methods in parallel to regression adjustment and
propensity score weighting in the case of treatment selection
based on covariates. The regression method focuses on the
relationship between responses (observed outcome and treat-
ment status jointly) and instruments adjusted for covariates.
The weighting method focuses on the relationship between in-
struments and covariates to balance different instrument groups
with respect to covariates. For both methods, modeling assump-
tions are made directly on observed data and separated from the
IV assumptions, whereas causal effects are inferred by com-

Table 2. LATE Estimation for the Population

Instrument level → instrument level ′

1 → 2 2 → 3 3 → 4 1 → 4

reg ips comb reg ips comb reg ips comb reg ips comb

Dz < Dz ′ .058 .062 .060 .059 .064 .062 .060 .064 .062 .178 .189 .184
(.009) (.018) (.012) (.010) (.020) (.013) (.010) (.020) (.013) (.028) (.057) (.039)

Y1 − 6 .475 .615 .614 .479 .676 .671 .481 .744 .735 .478 .679 .674
(.042) (.140) (.144) (.052) (.179) (.185) (.065) (.225) (.230) (.053) (.181) (.186)

Y0 − 6 .157 −.712 −.766 .195 .018 −.013 .229 .525 .516 .194 −.050 −.081
(.106) (.593) (.596) (.077) (.189) (.192) (.052) (.235) (.220) (.076) (.213) (.218)

Y1 − Y0 .318 1.327 1.380 .284 .658 .684 .252 .219 .219 .284 .729 .755
(.116) (.642) (.650) (.094) (.283) (.297) (.084) (.302) (.287) (.094) (.302) (.317)

NOTE: The regression model for D and those for Y within {D = 1} and {D = 0} are taken from Section 5.1 with the linear term of Z∗ in place of the linear terms of Z.
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bining observed-data models with the IV assumptions through
identification results.

The benefits of this approach include flexibility, because
parametric and semiparametric regression models can be built
and checked for various types of outcomes and instruments,
and robustness, because the identification results are nonpara-
metric, free of functional form or distributional restrictions. At
the same time, there are limitations. First, models in this ap-
proach are intended for smoothing and have no causal interpre-
tation. Compared with the structural modeling approach, it can
be more difficult to test for particular features of causal effects
and to incorporate substantive information on such features into
analysis. Second, the models in this approach ignore part of the
restrictions fully implied by the IV assumptions on observed
data. The methods are based on nonparametric IV estimands
and can be less efficient than likelihood-based methods. These
comparisons depend on how well structural models can be spec-
ified in various circumstances. For future work, it is interesting
to investigate a compromise between different approaches.

APPENDIX: PROOFS

Proposition A.1. Let U be a random variable, and let X and Z be
random vectors on a probability space. Let LU|X be the conditional
distribution of U given X.

(a) If LU|X=x is absolutely continuous for each x, then there exists
a function ϕ(u,x) such that it is a nondecreasing function in u for
each x and ϕ(U,X) ⊥ X. Moreover,

⋃

z

({
ϕ(U,X) ≤ ϕ(γ (X, z),X)

}\{U ≤ γ (X, z)})

is a null set for any function γ (x, z).
(b) If further U ⊥ Z |X, then ϕ(U,X) ⊥ Z.

Proof. (a) Take ϕ(·,x) to be the cumulative distribution func-
tion of LU|X=x. Then the conditional distribution of ϕ(U,X) given
X = x is uniform on the unit interval for each x, which implies that
ϕ(U,X) ⊥ X. The null-set claim follows because
{
ϕ(U,X) ≤ ϕ(γ (X, z),X)

}\{U ≤ γ (X, z)}
= {

ϕ(U,X) = ϕ(γ (X, z),X)
} ∩ {U > γ (X, z)},

and
⋃

z({ϕ(U,x) = ϕ(γ (x, z),x)} ∩ {U > γ (x, z)}) is a null set under
LU|X=x for each x.

(b) Let LU|(X,Z) be the conditional distribution of U given (X,Z).
Then U ⊥ Z |X implies that LU|(X,Z)=(x,z) = LU|X=x for each (x, z).
The claim follows from the proof of (a) with (X,Z) in place of X.

Proof of Theorem 1

(a)–(b) By the IV independence assumption,

E(Y|D = 1,X = x,Z = z)P(D = 1|X = x,Z = z)

= E(DY|X = x,Z = z) = E(DzY1|X = x,Z = z)

= E(DzY1|X = x).

Similarly, E(D|X = x,Z = z) = E(Dz|X = x). By the IV monotonicity
assumption, if π(x, z) < π(x, z′), then Dz(ω) ≤ Dz′(ω) for all ω in
{X = x} and

E
(
Y11{Dz = 0,Dz′ = 1}|X = x

) = E(Dz′Y1|X = x)− E(DzY1|X = x)

and

E
(
1{Dz = 0,Dz′ = 1}|X = x

) = E(Dz′ |X = x) − E(Dz|X = x).

The equation for E(Y1|Dz < Dz′ ,X = x) follows by taking the ratio
of the foregoing two equations. The equation for E(Y1|X = x) follows
because

E(Y1|X = x)

= E(DzY1|X = x) + E
(
(1 − Dz)Y1|X = x

)

= E(DzY1|X = x) + E(Y1|Dz = 0,X = x)P(Dz = 0|X = x).

The equations for the conditional expectations of Y0 can be proven
similarly.

(c) If Dz(ω) ≤ Dz′(ω) for all ω, then

E(Y11{Dz = 0,Dz′ = 1}) = E(Dz′Y1) − E(DzY1)

and

E(1{Dz = 0,Dz′ = 1}) = E(Dz′) − E(Dz).

By the law of iterated expectations, E(DzY1) = E[E(DzY1|X)],
E(Dz) = E[E(Dz|X)], and so on. The equation for E(Y1|Dz < Dz′)
follows by taking the ratio of the foregoing two equations. The equa-
tion for E(Y0|Dz < Dz′) can be proven similarly.

Proof of Theorem 2

By the asymptotic theory of M-estimators (van der Vaart 1998) and
Taylor expansions, we obtain

ψ̂ − ψ = V−1
2 Ẽ[s2(ψ; γ̂ )] + op

(
n−1/2)

= V−1
2

{
Ẽ[s2(ψ;γ )] − L(γ̂ − γ )

} + op
(
n−1/2)

= V−1
2

{
Ẽ[s2(ψ;γ )] − LV−1

1 Ẽ[s1(γ )]} + op
(
n−1/2)

,

where the last line follows from the asymptotic expansion of γ̂ .

Proof of Theorem 3

(a) The IV independence assumption implies that E(DY|X = x,

Z = z) = E(DzY1|X = x) as in the proof of Theorem 1(a)–(b), and
thus

E

[
p∗(Z)

p(Z|X)
ϕ(Z)DY

]
=

∫
E(DY|X = x,Z = z)ϕ(z)p∗(z)p(x)dz dx

=
∫

E(DzY1|X = x)ϕ(z)p∗(z)p(x)dz dx

=
∫

E(DzY1)ϕ(z)p∗(z)dz.

By similar arguments, we obtain

E

[
p∗(Z)

p(Z|X)
ϕ(Z)G1(Z)D

]
=

∫
E(Dz)G1(z)ϕ(z)p∗(z)dz.

The second equation follows because E(DzY1) = E(Dz)G1(z). The
other two equations can be proven similarly.

(b) The equation for E(Y1|Dz < Dz′) follows from the proof of The-
orem 1(c) and the fact that E(DzY1) = F(z)G1(z). The equation for
E(Y0|Dz < Dz′) can be proven similarly.

Proof of Theorem 4

By the asymptotic theory of M-estimators (van der Vaart 1998) and
Taylor expansion, we obtain

θ̂ − θ = V−1
1 Ẽ[τ1(θ; γ̂ )] + op

(
n−1/2)

= V−1
1

{
Ẽ[τ1(θ;γ )] + E

[
∂τ1

∂γ

]
(γ̂ − γ )

}
+ op

(
n−1/2)

= V−1
1

{
Ẽ[τ1(θ;γ )] − E(τ1s)var−1(s)Ẽ(s)

} + op
(
n−1/2)

,
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where the last line follows because

∂τ1

∂γ
= − τ1

p(Z|X)

∂p(Z|X)

∂γ

= −τ1
(
1{Z = j} − p( j|X)

)
1≤j≤k−1a(X).

The other expansion can be proven similarly.

[Received March 2005. Revised October 2005.]
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