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I Auxiliary variable derivation of proposal schemes

We show that the proposal scheme (7) can also be derived through an auxiliary variable argument

related to Titsias and Papaspiliopoulos (2018), combined with an over-relaxation technique as in

Adler (1981) and Neal (1998). Compared with Titsias and Papaspiliopoulos (2018), our derivation

deals with the augmented density of (x, u), instead of x alone. More importantly, our derivation

incorporates an over-relaxation technique to accommodate all possible proposal schemes (7). Finally,

when applied without the momentum, our approach with preconditioning leads to a general class of

proposal schemes, including the modified pMALA algorithm in Section 2 and the second-order scheme

in Titsias and Papaspiliopoulos (2018). These proposal schemes may involve different configurations

of auxiliary variables, after the approximate variance for the target is matched by preconditioning.

The starting point of our derivation is to introduce auxiliary variables (y, v) and further augment

the target density as π(x, u, y, v) = π(x, u)π(y, v|x, u). The conditional density π(y, v|x, u) can be

defined from a random walk update,

(y, v)|(x, u) ∼ N ((x, u), S), (S1)

where S is a (2k) × (2k) variance matrix independent from (x, u). Given (x0, u0), consider the

following steps to sample from the new target:

� sample (y, v)|(x0, u0) ∼ π(y, v|x0, u0) directly according to (S1),

� sample (x1, u1)|(y, v) ∼ π(x1, u1|y, v) by drawing (x∗, u∗) from a conditional proposal den-

sity q(x∗, u∗|y, v, x0, u0) and accepting (x1, u1) = (x∗, u∗) with the usual Metropolis–Hastings

probability or otherwise setting (x1, u1) = (x0, u0).

The two steps can be identified as Gibbs sampling and Metropolis–Hastings within Gibbs sampling

respectively. Next, the proposal density q(x∗, u∗|y, v, x0, u0) can be defined as an approximation to

π(x∗, u∗|y, v), based on an approximation to π(x) by a normal density with an identity variance

anchored at x0:

π̃(x;x0) ∝ exp

{
−U(x0)− (x− x0)T∇U(x0)−

1

2
(x− x0)T(x− x0)

}
∝ N (x|x0 −∇U(x0), I). (S2)
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Specifically, π̃(x;x0) is determined such that the gradient of − log π̃(x;x0) at x0 coincides with

∇U(x0), the gradient of U(x) = − log π(x) at x0. We take q(x∗, u∗|y, v, x0, u0) = π̃(x∗, u∗|y, v;x0),

the induced conditional density by (S3) in Lemma S1. This result can be shown by similar calculation

as in Gelman et al. (2014, Section 3.5).

Lemma S1 Define π̃(x, u;x0) ∝ π̃(x;x0) exp(−uTu/2). Then the joint density defined by π̃(x, u;x0)

×π(y, v|x, u) induces the conditional density

π̃(x, u|y, v;x0) = N (x, u|µx0 , A), (S3)

where π(y, v|x, u) is as in (S1), and

A = (I + S−1)−1, µx0 = A

x0 −∇U(x0)

0

+ S−1

y
v

 .
Similarly as in Titsias and Papaspiliopoulos (2018), the auxiliary variables (y, v) can be integrated

out to obtain a marginal scheme from (x0, u0) to (x∗, u∗) as

q(x∗, u∗|x0, u0) =
∫
π̃(x∗, u∗|y, v;x0)π(y, v|x0, u0) d(y, v)

= N

x∗
u∗

∣∣∣∣∣∣
x0
u0

−A
∇U(x0)

u

 , 2A−A2

 , (S4)

where 2A−A2 = AS−1A+A for A = (I+S−1)−1. Hence the proposal scheme (S4) from the auxiliary

variable argument takes the same form as (7). This discussion also confirms the previous observation

that when the target density π(x) is N (0, I), the proposal (x∗, u∗) in (8) is always accepted, because

the normal approximation π̃(x;x0) becomes exact and hence (x∗, u∗) is obtained from just two-block

Gibbs sampling.

There is, however, a caveat in the link between (7) and (S4). Using the auxiliary variables leads

to the proposal (S4), with the relation A = (I + S−1)−1. Because S is positive semi-definite as a

variance matrix, this relation imposes the constraint that A ≤ I. For the proposal scheme (7), it is

only required that 0 ≤ A ≤ 2I. When I < A ≤ 2I, the scheme (7) remains valid, but cannot be

deduced from (S4). Hence (7) encapsulates a broader class of proposal distributions than directly

derived via auxiliary variables.

Next we show that the over-relaxation technique (Adler, 1981; Neal, 1998) can be exploited

to define an auxiliary proposal density q(x∗, u∗|y, v, x0, u0) more flexible than above, so that the

entire class of proposal distributions (7) can be recovered. By over-relaxation based on normal
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distributions, consider the proposal density

qα(x
∗, u∗|y, v, x0, u0) = N

(
x∗, u∗|µx0 + α((xT

0 , u
T
0 )

T − µx0), (1− α2)A
)
,

where µx0 and A are defined as in Lemma S1, and −1 ≤ α ≤ 1 controls the degree of over-relaxation.

Setting α = 0 gives the previous choice q(x∗, u∗|y, v, x0, u0) = π̃(x∗, u∗|y, v;x0) from (S3) and leads

to the marginal proposal density (S4).

Lemma S2 Let Aα = (1 − α)A. The marginal proposal density obtained by integrating out (y, v)

from qα(x
∗, u∗|y, v, x0, u0) is

qα(x
∗, u∗|x0, u0) =

∫
qα(x

∗, u∗|y, v, x0, u0)π(y, v|x0, u0) d(y, v)

= N

x∗
u∗

∣∣∣∣∣∣
x0
u0

−Aα
∇U(x0)

u

 , 2Aα −A2
α

 . (S5)

By the preceding result, the marginal scheme (S5) is still of the form (7), with A replaced by Aα.

The matrix Aα is determined from α and S as Aα = (1−α)(I+S−1)−1. The constraints −1 ≤ α ≤ 1

and S ≥ 0 imply that 0 ≤ Aα ≤ 2I. Conversely, any matrix 0 ≤ A ≤ 2I can be obtained as Aα for

some −1 ≤ α ≤ 1 and S ≥ 0. The choice A = 2I corresponds to the limit case α = −1 and S →∞.

In this sense, the proposal scheme (7) with any choice 0 ≤ A ≤ 2I can be identified as a marginal

scheme from the auxiliary variable argument while incorporating over-relaxation.

In the remainder of this section, we discuss consequences of the foregoing development (without

over-relaxation) when the momentum variable u is dropped. In this case, the proposal density from

x0 to x∗ in (S4) reduces to

q(x∗|x0) = N (x∗|x0 − Ã∇U(x0), 2Ã− Ã2),

where Ã is a k × k symmetric matrix satisfying 0 ≤ Ã ≤ I before over-relaxation. Taking Ã =

ϵ2

1+
√
1−ϵ2 I = (1−

√
1− ϵ2)I leads to the proposal scheme

x∗ = x0 −
ϵ2

1 +
√
1− ϵ2

∇U(x0) + Z, Z ∼ N (0, ϵ2I), (S6)

which is precisely the proposal scheme in modified pMALA with Σ = I (i.e., modified MALA). In

general, our auxiliary variable argument can be applied, with a normal approximation to π(x) using

an arbitrary choice of variance matrix Σ:

π̃(x;x0) ∝ exp

{
−U(x0)− (x− x0)T∇U(x0)−

1

2
(x− x0)TΣ−1(x− x0)

}
. (S7)
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With the momentum dropped from (S1), the auxiliary variable y is defined as y|x ∼ N (x, S̃), where

S̃ is a k × k variance matrix. By similar reasoning which leads to (S4) but using (S7), we obtain a

proposal scheme from x0 to x∗ in the form

x∗ = x0 − Ã∇U(x0) + Z, Z ∼ N (0, 2Ã− ÃΣ−1Ã), (S8)

where Ã = (Σ−1+ S̃−1)−1, a k×k symmetric matrix satisfying 0 ≤ Ã ≤ Σ (without over-relaxation),

and 2Ã − ÃΣ−1Ã = ÃS̃−1Ã + Ã. When the target distribution is N (0,Σ), the proposal x∗ is

always accepted under Metropolis–Hastings sampling. Taking Ã = ϵ2

1+
√
1−ϵ2Σ or equivalently S̃ =

{(1−
√
1− ϵ2)/

√
1− ϵ2}Σ ∝ Σ leads to the proposal scheme in modified pMALA. As a special case,

taking Σ = C and Ã = ϵ2

1+
√
1−ϵ2C or equivalently S̃ = {(1 −

√
1− ϵ2)/

√
1− ϵ2}C ∝ C yields the

proposal scheme (2) in pCNL.

It is interesting to compare pCNL and pMALA* (i.e., modified pMALA) with Titsias and Pa-

paspiliopoulos (2018) in the Bayesian setting with π(x) ∝ exp{−U(x)} = exp{ℓ(x)}N (x|0, C), where

ℓ(x) is the log-likelihood and C a prior variance. The marginal algorithm, denoted as mGrad, with

the proposal (3) is derived in Titsias and Papaspiliopoulos (2018) using auxiliary variables and a

normal approximation to π(x) similarly as above. In fact, the proposal scheme (3) can be deduced

from the general class (S8) by taking Σ = C and Ã = C̃ or equivalently S̃ = δ
2I. Compared with

pCNL, the mGrad algorithm also uses the prior variance C for preconditioning, but involves a dif-

ferent configuration of the auxiliary variable y given x, where the conditional variance is S̃ = δ
2I

instead of being proportional to C. As discussed in Titsias and Papaspiliopoulos (2018), Section 3.4,

the mGrad algorithm based on this choice of auxiliary variables can achieve certain advantages over

pCNL in the context of posterior sampling with a latent Gaussian field model.

As mentioned in Section 2, pMALA* in general differs from pCNL and mGrad in allowing a

preconditioning matrix Σ to capture both the prior and the likelihood. In this direction, we compare

pMALA* with the second-order algorithm, denoted as mGrad2, in the Supplement of Titsias and

Papaspiliopoulos (2018). The proposal scheme for mGrad2, after correcting a typo to match the

first-order scheme (3) when G = 0, can be written as

x∗ =
2

δ
C†x0 + C†(∇ℓ(x0)−Gx0) + Z = x0 − C†∇U(x0) + Z, Z ∼ N (0,

2

δ
C†2 + C†), (S9)

where C† = (2δ I+C
−1−G)−1, and G is the Hessian ∇2ℓ(x0). To facilitate comparison, assume that

G is an Hessian approximation, independent of x0. The proposal scheme (S9), by direct calculation,

can be obtained from (S8) by taking Σ = (C−1 − G)−1 as an approximation to the variance of the

target π(x) and Ã = C† = (Σ−1+ 2
δ I)

−1, corresponding to S̃ = δ
2I as the conditional variance of the
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auxiliary variable y given x. Therefore, the second-order algorithm mGrad2 and modified pMALA

use proposal schemes both in the class (S8), but with different configurations of the auxiliary variable

y (hence difference choices of Ã), after the approximate variance Σ is matched. Further comparison

of these two algorithms with general Σ ̸= C can be investigated in future work.

As a final note, it is helpful to mention that we refer to as a preconditioning matrix specifically

the variance matrix Σ used in the normal approximation (S7). The resulting proposal scheme (S8) is

rejection-free when the target distribution is normal with variance matrix Σ. This approach differs

from how preconditioning is constructed in Titsias and Papaspiliopoulos (2018). The preconditioned

version of the proposal (3) in their Eq. (8) can be expressed as (S8) with Σ = C and S̃ = δ
2V for

some preconditioning matrix V . The prior variance C is used as the approximate variance for the

target distribution but V is used as the conditional variance of the auxiliary variable y given x. This

proposal scheme is rejection-free for the target N (0, C), not in general for N (0, V ).

I.1 Proof of Lemma S2

Given the current variables (x0, u0), the variables (y, v) are generated as

(y, v)|(x0, u0) ∼ N ((x0, u0), S). (S10)

The variables (x∗, u∗) are then generated from qα as

(x∗, u∗)|(y, v, x0, u0) ∼ N

(1− α)µx0 + α

x0
u0

 , (1− α2)A

 , (S11)

where −1 ≤ α ≤ 1, and

A = (I + S−1)−1, µx0 = A

x0 −∇U(x0)

0

+ S−1

y
v

 . (S12)

Then (x∗, u∗) and (y, v) are jointly normal given (x0, u0) and hence (x∗, u∗)|(x0, u0) is also normally

distributed. It suffices to determine its mean and variance.

First, we compute E(x∗, u∗|x0, u0). By (S10) and (S12),

E[µx0 |x0, u0] = A

x0 −∇U(x0)

0

+ S−1

x0
u0


= A

(I + S−1)

x0
u0

−
∇U(x0)

u0

 =

x0
u0

−A
∇U(x0)

u0

 . (S13)
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Therefore, by (S11) and (S13),

E(x∗, u∗|x0, u0) = E[E(x, u∗|y, v, x0, u0) |x0, u0]

= E

(1− α)µx0 + α

x0
u0

∣∣∣∣∣∣x0, u0
 =

x0
u0

−Aα
∇U(x0)

u0

 ,

where Aα = (1− α)A.

Next, we compute Var(x∗, u∗|x0, u0). By (S11)–(S12),

Var[ E(x∗, u∗|y, v, x0, u0) |x0, u0] = Var

(1− α)µx0 + α

x0
u0

∣∣∣∣∣∣x0, u0


= (1− α)2Var[µx0 |x0, u0] = (1− α)2AS−1A = AαS
−1Aα, (S14)

E[Var(x∗, u∗|y, v, x0, u0) |x0, u0] = E[(1− α2)A|x0, u0]

= (1− α2)A = (1 + α)Aα. (S15)

Combining (S14) and (S15) yields

Var(x∗, u∗|x0, u0)

= E[Var(x∗, u∗|y, v, x0, u0( |x0, u0] + Var[ E(x∗, u∗|y, v, x0, u0) |x0, u0]

= AαS
−1Aα + (1 + α)Aα.

Finally, we show that AαS
−1Aα + (1 + α)Aα = 2Aα − A2

α. Because A = (I + S−1)−1, we have

A(I + S−1) = I and hence A2 +AS−1A = A. Then

(1− α)2AS−1A = (1− α)2A− (1− α)2A2

⇒ AαS
−1Aα = (1− α)Aα −A2

α

⇒ AαS
−1Aα + (1 + α)Aα = 2Aα −A2

α.

This completes the proof of Lemma S2.

II Demonstration of validity of UDL

We demonstrate that UDL is valid in leaving the augmented target π(x, u) invariant. Similarly as

HAMS, by Proposition 3, it suffices to verify that the acceptance probability stated for UDL in

Section 2 can be written in the form of generalized Metropolis–Hastings probability (21) for the

associated (forward) proposal density Q.
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First, we calculate the generalized Metropolis–Hastings probability (21) with the (forward) pro-

posal density Q from UDL. The proposal scheme in UDL is defined as

Sample Z1, Z2 ∼ N (0,M) independently,

u+ =
√
cu0 +

√
1− cZ1,

ũ = u+ − ϵ

2
∇U(x0), x∗ = x0 + ϵM−1ũ, u− = ũ− ϵ

2
∇U(x∗),

u∗ =
√
cu− +

√
1− cZ2.

The noises (Z1, Z2) can be expressed as

Z1 =

(
M

ϵ
(x∗ − x0) +

ϵ

2
∇U(x0)−

√
cu0

)
(1− c)−1/2, (S16)

Z2 =

(√
cM

ϵ
(x0 − x∗) +

ϵ
√
c

2
∇U(x∗) +

√
cu∗
)
(1− c)−1/2. (S17)

Suppose that the mapping above from (x0, u0) to (x∗, u∗) is applied from (x∗,−u∗) to (x0,−u0),

but using new noises (Z3, Z4). By exchanging (x0, u0) and (x∗,−u∗), the new noises (Z3, Z4) can be

calculated as

Z3 =

(
M

ϵ
(x0 − x∗) +

ϵ

2
∇U(x∗) +

√
cu∗
)
(1− c)−1/2, (S18)

Z4 =

(√
cM

ϵ
(x∗ − x0) +

ϵ
√
c

2
∇U(x0)−

√
cu0

)
(1− c)−1/2. (S19)

Then the forward and backward transitions of the proposals for UDL can be illustrated in a similar

manner to (20) as x0
u0

 (Z1,Z2)−→

x∗
u∗

 ,

 x∗

−u∗

 (Z3,Z4)−→

 x0

−u0

 , (S20)

where the arrows denote the same mapping, depending on (Z1, Z2) or (Z3, Z4).

Because (Z1, Z2) are the only sources of randomness, the (forward) proposal density from (x0, u0)

to (x∗, u∗) is

Q(x∗, u∗|x0, u0) = N (Z1|0,M)N (Z2|0,M)

∝ exp

(
−1

2
ZT
1M

−1Z1 −
1

2
ZT
2M

−1Z2

)
. (S21)

Evaluation of the same proposal density from (x∗,−u∗) to (x0,−u0) gives

Q(x0,−u0|x∗,−u∗) = N (Z3|0,M)N (Z4|0,M)

∝ exp

(
−1

2
ZT
3M

−1Z3 −
1

2
ZT
4M

−1Z4

)
. (S22)
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Using (S16) to (S22), the log ratio of proposal densities is

log

(
Q(x0,−u0|x∗,−u∗)
Q(x∗, u∗|x0, u0)

)
=

1

2
(x∗ − x0)T(∇U(x∗) +∇U(x0))

− ϵ2

8

(
[∇U(x∗)]TM−1∇U(x∗)− [∇U(x0)]

TM−1∇U(x0)
)
− 1

2

(
uT
0M

−1u0 − (u∗)TM−1u∗
)
. (S23)

Furthermore, the log ratio of target densities at (x0, u0) and (x∗,−u∗) is

log

(
π(x∗,−u∗)
π(x0, u0)

)
= U(x0)− U(x∗) +

1

2

(
uT
0M

−1u0 − (u∗)TM−1u∗
)
. (S24)

From (S23) and (S24), the generalized Metropolis–Hastings probability (21) is

min

(
1, exp

{
U(x0)− U(x∗) +

(x∗ − x0)T

2
(∇U(x0) +∇U(x∗))

−ϵ
2

8

(
[∇U(x∗)]TM−1∇U(x∗)− [∇U(x0)]

TM−1∇U(x0)
)})

. (S25)

Second, we show that generalized Metropolis–Hastings probability (S25) reduces to the accep-

tance probability stated in Section 2:

min
(
1, exp(H(x0, u

+)−H(x∗, u−))
)
. (S26)

In fact, direct calculation using u− = u+ − ϵ
2 (∇U(x∗) +∇U(x0)) yields

(u−)TM−1u− = (u+)TM−1u+ +
ϵ2

4
(∇U(x0) +∇U(x∗))TM−1(∇U(x0) +∇U(x∗))

− ϵ(u+)TM−1(∇U(x0) +∇U(x∗)),

and hence

1

2
(u+)TM−1u+ − 1

2
(u−)TM−1u−

=
ϵ

2
(u+)TM−1(∇U(x0) +∇U(x∗)− ϵ2

8
(∇U(x0) +∇U(x∗))TM−1(∇U(x0) +∇U(x∗))

=
1

2
(x∗ − x0)T(∇U(x0) +∇U(x∗))− ϵ2

8

(
[∇U(x∗)]TM−1∇U(x∗)− [∇U(x0)]

TM−1∇U(x0)
)
.

(S27)

By the definition of the Hamiltonian, we have

H(x0, u
+)−H(x∗, u−) = U(x0)− U(x∗) +

1

2
(u+)TM−1u+ − 1

2
(u−)TM−1u−.

Substituting (S27) into the above, we see that (S26) equals (S25).
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III Generalized Metropolis–Hastings sampling

We give a broader definition of generalized Metropolis–Hastings sampling in Section 4, to accommo-

date both continuous and discrete variables.

Let π(y) be a pre-specified probability density function on Y, with respect to possibly a product

of Lebesgue and counting measures. Assume that J : Y → Y is an invertible mapping, such that for

any set C ⊂ Y and integrable function h,∫
J(C)

π(y) dy =

∫
C
π(y) dy, (S28)∫

J(C)
h(J−1y)π(y) dy =

∫
C
h(y)π(y) dy, (S29)

where J−1 denote the inverse mapping of J , and J(C) = {Jy : y ∈ C}. While (S28) is restated from

(33), condition (S29) is in general stronger than (S28) and analogous to saying that the Jacobian

determinant of mapping J is ±1 and π(J−1y) = π(y) in the case where Y is an Euclidean space en-

dowed with the Lebesgue measure. With this interpretation of Jy, generalized Metropolis–Hastings

sampling is still defined as in Section 4. More importantly, Proposition 3 can be seen to remain

valid, by substituting (S29) for all the change-of-variables calculation in the proof.

Next we show that the irreversible jump sampler (I-Jump) in Ma et al. (2018) can be obtained

as a special case of generalized Metropolis-Hastings sampling, when a binary auxiliary variable

s ∈ {1,−1} is introduced for sampling from an original target density π(x) on X . Given current

variables (x0, s0), an iteration of I-Jump can be described as follows, where f(·|x0) and g(·|x0) are

two possibly different proposal densities.

Irreversible jump sampler (I-Jump).

� Sample w ∼ Uniform[0, 1].

� If s0 = 1, sample x∗ ∼ f(·|x0) and compute

ρ(x∗|x0) = min

(
1,
π(x∗)g(x0|x∗)
π(x0)f(x∗|x0)

)
;

else sample x∗ ∼ g(·|x0) and compute

ρ(x∗|x0) = min

(
1,
π(x∗)f(x0|x∗)
π(x0)g(x∗|x0)

)
.

� If w < ρ(x∗|x0), then set (x1, s1) = (x∗, s0); else set (x1, s1) = (x0,−s0).

To recast I-Jump, consider the augmented target density π(x, s) = π(x)/2 on the product space

Y = X ×{1,−1}, that is, x and s are independent and s takes value 1 or −1 with equal probabilities.
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The mapping defined by J(x, s) = (x,−s) satisfies conditions (S28)–(S29). Define the proposal

density Q as

Q(x∗, s∗|x0, s0) =


f(x∗|x0), if s∗ = s0 = 1,

g(x∗|x0), if s∗ = s0 = −1,

0, if s∗ ̸= s0.

Then the acceptance probability in I-Jump can be expressed as

ρ(x∗, s∗|x0, s0) = min

(
1,
π(x∗,−s∗)Q(x0,−s0|x∗,−s∗)
π(x0, s0)Q(x∗, s∗|x0, s0)

)
.

by noticing that s∗ = s0 and π(x∗,−s∗)/π(x0, s0) = π(x∗)/π(x0). Therefore, the I-Jump algorithm

can be seen as generalized Metropolis–Hastings sampling.

As a concrete example of I-Jump, Ma et al. (2018) proposed an irreversible MALA (I-MALA)

algorithm. The proposal schemes f(·|x0) and g(·|x0) are defined as discretizations of irreversible

continuous Markov processes. Each proposal scheme can be related to (36) in our G2MS algorithm

with y0 replaced by x0:

x∗ = x0 −B∇U(x0) + Z, Z ∼ N (0, B +BT −BBT).

For B = ϵ2B0 with ϵ ≈ 0, the preceding scheme is approximately

x∗ = x0 − ϵ2(D0 + C0)∇U(x0) + Z, Z ∼ N (0, 2ϵ2D0), (S30)

where D0 = (B0 + BT
0 )/2 is symmetric and C0 = (B0 − BT

0 )/2 is skew-symmetric. It is interesting

that the form of (S30) matches the proposal schemes derived by discretizing general Markov procsses

in Ma et al. (2018).

Although both HAMS and I-MALA can be subsumed by generalized Metropolis–Hastings sam-

pling, there remain important differences. The HAMS algorithm uses momentum as an auxiliary

variable and hence is able to exploit symmetry in the momentum distribution, whereas I-MALA re-

lies on lifting with a binary variable (Gustafson, 1998; Vucelja, 2016) and needs to split the original

variable x to specify symmetric and skew-symmetric matrices D0 and C0 when defining proposal

schemes based on irreversible Markov processes in x. Further research is desired to compare and

connect these algorithms.

IV Proofs

IV.1 Proof of Propositions 1 and 2

The results follow from Proposition 3, by the discussion at the end of Section 4.
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IV.2 Proof of Proposition 3

First, the transition kernel K(y1|y0) can be expressed as

K(y1|y0) dy1 = Q(y1|y0)ρ(y1|y0)dy1 + (1− r(y0))δJy0(dy1), (S31)

where r(y0) =
∫
Q(y1|y0)ρ(y1|y0)dy1, δy denotes point mass at y, and as in (34),

ρ(y1|y0) = min

(
1,
π(J−1y1)Q(Jy0|J−1y1)

π(y0)Q(y1|y0)

)
.

Then for y1 ̸= Jy0,

π(y0)K(y1|y0) = π(y0)Q(y1|y0)ρ(y1|y0).

Replacing (y0, y1) with (J−1y1, Jy0) above shows that for Jy0 ̸= y1,

π(J−1y1)K(Jy0|J−1y1) = π(J−1y1)Q(Jy0|J−1y1)ρ(Jy0|J−1y1),

where

ρ(Jy0|J−1y1) = min

(
1,

π(y0)Q(y1|y0)
π(J−1y1)Q(Jy0|J−1y1)

)
.

By direct calculation, we see that for Jy0 ̸= y1,

π(y0)Q(y1|y0)ρ(y1|y0) = π(J−1y1)Q(Jy0|J−1y1)ρ(Jy0|J−1y1)

= min
(
π(y0)Q(y1|y0), π(J−1y1)Q(Jy0|J−1y1)

)
, (S32)

that is,

π(y0)K(y1|y0) = π(J−1y1)K(Jy0|J−1y1). (S33)

Equation (S33) also holds trivially if Jy0 = y1. Hence (S33) holds whether Jy0 = y1 or not. By the

invariance property π(J−1y1) = π(y1), equation (S33) reduces to (35).

The proof that π(y) is a stationary distribution is a generalization of Tierney (1994). It suffices

to show that for any set C ⊂ Y,∫
C

(∫
π(y0)K(y1|y0) dy0

)
dy1 =

∫
C
π(y1) dy1. (S34)
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By (S31), the left-hand side of (S34) can be calculated as∫
C

(∫
π(y0)Q(y1|y0)ρ(y1|y0) dy0

)
dy1 +

∫
J−1(C)

(1− r(y0))π(y0) dy0

=

∫
C

(∫
Q(Jy0|J−1y1)ρ(Jy0|J−1y1) dy0

)
π(J−1y1) dy1 +

∫
J−1(C)

(1− r(y0))π(y0) dy0

=

∫
C
r(J−1y1)π(J

−1y1)| det(J−1)| dy1 +
∫
J−1(C)

(1− r(y0))π(y0) dy0

=

∫
C
r(J−1y1)π(J

−1y1)| det(J−1)| dy1 +
∫
C
(1− r(J−1y0))π(J

−1y0)| det(J−1)| dy0

=

∫
C
π(J−1y1)| det(J−1)|dy1 =

∫
J(C)

π(y1) dy1,

which yields the right-hand side of (S34) by the invariance property (33). The first equality follows

from (S32), the second from the definition of r(·) and the change of variables, and the third and fifth

both from the change of variables.

IV.3 Proof of Corollary 1

The result follows from Corollary 3, by the discussion at the end of Section 4.

IV.4 Proof of Corollary 3

The backward proposal scheme (37) becomes Jy0 = (I − A)y∗ + Z∗. The new noise Z∗ can be

directly calculated using (39) as

Z∗ = Jy0 − (I −A)y∗ = (2A−A2)Jy0 − (I −A)Z.

Suppose that y0 ∼ N (0, I) and y∗ is generated by (39), y∗ = (1−A)Jy0+Z, with Z ∼ N (0, 2A−A2)

independently of y0. Then the conditional density of y∗ given y0 is p(y∗|y0) = N (Z|0, 2A − A2).

Moreover, by direct calculation, Z∗ is distributed as N (0, 2A−A2), independently of y∗. Hence the

conditional density of Jy0 given y∗ is p(Jy0|y∗) = N (Z∗|0, 2A − A2). By the change of variables,

the conditional density of y0 given y∗ is also p(y0|y∗) = N (Z∗|0, 2A − A2) because | det(J)| = 1.

Therefore, the acceptance probability (38) reduces to 1, because π(y0)p(y
∗|y0) = π(y∗)p(y0|y∗): both

π(y0)p(y
∗|y0) and π(y∗)p(y0|y∗) give the joint density of (y0, y

∗).

12



IV.5 Proof of Lemma 1

The HAMS-A proposal described in Section 3.3 is

Z̃ = Z − a∇U(x0) +
√
abu0, Z ∼ N (0, a(2− a− b)I),

x∗ = x0 + Z̃, u∗ = −u0 +
√
b

a
Z̃ + ϕ(Z̃ +∇U(x0)−∇U(x∗)),

Z∗ = Z̃ − a∇U(x∗)−
√
abu∗.

We express x∗, u∗ and Z∗ in terms of x0, u0, Z and ∇U(x∗):

x∗ = x0 −∇U(x0) +
√
abu0 + Z, (S35)

u∗ = [ϕ− ϕa−
√
ab]∇U(x0)− ϕ∇U(x∗) + [ϕ

√
ab+ b− 1]u0 +

[
ϕ+

√
b

a

]
Z, (S36)

Z∗ = [ab+ ϕa
√
ab− ϕ

√
ab− a]∇U(x0) + (

√
abϕ− a)∇U(x∗)

+ [2
√
ab− ϕab− b

√
ab]u0 +

[
1− ϕ

√
ab− b

]
Z. (S37)

Suppose that the target density π(x) is N (0, γ−1I). Then x∗, u∗ and Z∗ from (S35)–(S37) can

be expressed in terms of only x0, u0 and Z as

x∗ = (−aγ + 1)x0 +
√
abu0 + Z, (S38)

u∗ = [aϕγ2︸ ︷︷ ︸
(i)

−(aϕ+
√
ab)γ]x0 + [−ϕ

√
abγ︸ ︷︷ ︸

(iii)

+ϕ
√
ab+ b− 1]u0 +

−ϕγ︸︷︷︸
(v)

+ϕ+

√
b

a

Z, (S39)

Z∗ = [(a2 − ϕa
√
ab)γ2︸ ︷︷ ︸

(ii)

+(ab− 2a+ ϕa
√
ab)γ]x0

+ [(ϕab− a
√
ab)γ︸ ︷︷ ︸

(iv)

+2
√
ab− b

√
ab− ϕab]u0

+ [(ϕ
√
ab− a)γ︸ ︷︷ ︸
(vi)

+1− b− ϕ
√
ab]Z. (S40)

The quantity inside the exponential in (28) is

H(x0, u0)−H(x∗, u∗) +
ZTZ − (Z∗)TZ∗

2a(2− a− b)

=
γ

2
xT
0x0 −

γ

2
(x∗)Tx∗ +

1

2
uT
0u0 −

1

2
(u∗)Tu∗ +

ZTZ

2a(2− a− b)
− (Z∗)TZ∗

2a(2− a− b)
. (S41)

Substituting (S38)–(S40) into the above shows that (S41) can be expressed as a quadratic form in

x0, u0 and Z:

(xT
0 , u

T
0 , Z

T)G(γ)(xT
0 , u

T
0 , Z

T)T,
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where G(γ) is a 3×3 block matrix. For i, j = 1, 2, 3, the (i, j)th block of G(γ) is of the form gij(γ)I,

where gij(γ) is a scalar, polynomial of γ, with coefficients depending on (a, b, ϕ).

Now we compute the coefficients of the leading terms (terms corresponding to highest power

of γ) of g11(γ), g22(γ) and g33(γ). Because we focus on only the leading terms, it is sufficient to

examine (S38)–(S40) and account for the coefficients of x0, u0, Z, labeled as (i), .., (v), which lead

to the highest power of γ in g11(γ), g22(γ) and g33(γ). The coefficient of the leading term of g11(γ)

associated with xT
0x0 is

− (i)2

2
− (ii)2

2a(2− a− b)
= −1

2
(aϕ)2γ4 − (a2 − ϕa

√
ab)2γ4

2a(2− a− b)

=
γ4

2(2− a− b)
(−a2ϕ2(2− a− b) + 2ϕa2

√
ab− ϕ2a2b− a3)

=
γ4a2

2(2− a− b)
(ϕ2(a− 2) + ϕ2

√
ab− a). (S42)

The coefficient of the leading term of g22(γ) associated with uT
0u0 is

− (iii)2

2
− (iv)2

2a(2− a− b)
= −1

2
(ϕ
√
ab)2γ2 − (ϕab− a

√
ab)2γ2

2a(2− a− b)

=
γ2

2(2− a− b)
(2ϕab

√
ab− a2b− ϕ2ab2 − 2ϕ2ab+ ϕ2a2b+ ϕ2ab2)

=
γ2ab

2(2− a− b)
(ϕ2(a− 2) + ϕ2

√
ab− a). (S43)

The coefficient of the leading term of g33(γ) associated with ZTZ is

− (v)2

2
− (vi)2

2a(2− a− b)
= −1

2
ϕ2γ2 − (ϕ

√
ab− a)2γ2

2a(2− a− b)

=
γ2

2(2− a− b)
(2ϕ
√
ab− a− ϕ2b− 2ϕ2 + aϕ2 + bϕ2)

=
γ2

2(2− a− b)
(ϕ2(a− 2) + ϕ2

√
ab− a). (S44)

Notice that (S42)–(S44) involve ϕ only through the same quadratic function of ϕ:

h(ϕ) = ϕ2(a− 2) + ϕ2
√
ab− a.

For a > 0, b ≥ 0 and a+ b ≤ 2, we have h(ϕ) ≤ 0, because (2
√
ab)2 + 4a(a− 2) = 4a(a+ b− 2) ≤ 0.

Hence |h(ϕ)| is minimized at ϕ = −2
√
ab/(2(a− 2)) =

√
ab/(2− a).

IV.6 Proof of Lemma 2

We use the following choice of A in (10): a1 = 2 − ã, a2 =
√
ãb̃, a3 = 2 − b̃ with the constraints on

ã, b̃ that ã > 0, b̃ ≥ 0 and ã + b̃ ≤ 2. The noise terms are proportional: Z2 = −
√
b̃/ãZ1. The new
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noises Z∗
1 and Z∗

2 , defined by (15), (24), and (17), can be expressed in terms of u0,∇U(x0),∇U(x∗)

and Z1 as

Z∗
1 =

√
ãb̃(b̃− ϕ

√
ãb̃)︸ ︷︷ ︸

θ1

u0 + (ã+ ãb̃− 2− ϕ(ã− 1)
√
ãb̃)︸ ︷︷ ︸

θ2

∇U(x0)

+ (ã− 2 + ϕ
√
ãb̃)︸ ︷︷ ︸

θ3

∇U(x∗) + (b̃+ 1− ϕ
√
ãb̃)︸ ︷︷ ︸

θ4

Z1,

Z∗
2 = (2− b̃)(b̃− ϕ

√
ãb̃)︸ ︷︷ ︸

ψ1

u0 + (
√
ãb̃(1− b̃)− ϕ(ã− 1)(2− b̃))︸ ︷︷ ︸

ψ2

∇U(x0)

+ (−
√
ãb̃+ ϕ(2− b̃))︸ ︷︷ ︸

ψ3

∇U(x∗) + (

√
b̃/ã(1− b̃)− ϕ(2− b̃))︸ ︷︷ ︸

ψ4

Z1.

Suppose there exists r ∈ R such that Z∗
2 = rZ∗

1 for arbitrary values of x0, u0 and Z1. Then the

coefficients, denoted above as θ1, . . . , θ4, ψ1, . . . , ψ4, satisfy

rθ1 = ψ1, rθ2 = ψ2, rθ3 = ψ3, rθ4 = ψ4. (S45)

We study the following possibilities.

First, suppose that θ1 ̸= 0. Then r = ψ1

θ1
= 2−b̃√

ãb̃
by (S45). Substituting this into rθ4 = ψ4 in

(S45) yields

rθ4 = ψ4 ⇒
2− b̃√
ãb̃

(b̃+ 1− ϕ
√
ãb̃) =

√
b̃/ã(1− b̃)− ϕ(2− b̃)

⇒ (2− b̃)(b̃+ 1)√
ãb̃

=

√
b̃/ã(1− b̃)⇒ (2− b̃)(b̃+ 1) = b̃(1− b̃)

⇒ b̃− b̃2 + 2 = b̃− b̃2 ⇒ 0 = 2,

which is a contradiction. Hence θ1 = ψ1 = 0, which gives two possibilities: either b̃ = 0 or ϕ =
√
b̃/ã.

Next suppose that b̃ = 0. Then θ4 = 1 and ψ4 = −2ϕ, and hence r = ψ4/θ4 = −2ϕ by (S45).

Moreover, θ2 = ã− 2 and ψ2 = −2ϕ(ã− 1), and

rθ2 = ψ2 ⇒ −2ϕ(ã− 2) = −2ϕ(ã− 1),

which implies that ϕ = 0. Thus if b̃ = 0, then ϕ = 0 as well. This gives the trivial case that r = 0

and Z∗
2 ≡ 0.

Finally suppose that ϕ =
√
b̃/ã. Then Z∗

2 = rZ∗
1 is satisfied with r = −

√
b̃/ã by the following
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calculation:

θ1 = ψ1 = 0,

θ2 = ã+ ãb̃− 2− b̃(ã− 1) = ã+ b̃− 2,

ψ2 =
√
ãb̃(1− b̃)−

√
b̃

ã
(ã− b̃)(2− b̃) = −

√
b̃

ã
(ã+ b̃− 2) = rθ2,

θ3 = ã− 2 + b̃, ψ3 = −
√
ãb̃+

√
b̃

ã
(2− b̃) = −

√
b̃

ã
(b̃− 2 + ã) = rθ3,

θ4 = b̃+ 1− b̃ = 1, ψ4 =

√
b̃

ã
(1− b̃)−

√
b̃

ã
(2− b̃) = −

√
b̃

ã
= rθ4.

Therefore Z∗
2 = rZ∗

1 if and only if r = −
√
b̃/ã and ϕ =

√
b̃/ã, which also includes the trivial case,

r = ϕ = b̃ = 0.

IV.7 Proof of Lemma 3

By the Gaussian-calibrated rejection-free property, (x1, u1) = (x∗, u∗) when the target density π(x)

is N (0, I). We give a proof for HAMS-A and HAMS-B separately.

For HAMS-A, the lag-1 auto-covariance matrix is

CA = Cov((x∗, u∗), (x0, u0)) =

(1− a)I
√
abI

−
√
abI (b− 1)I

 .

The eigenvalues of CA are the eigenvalues of CA with I = 1, each with multiplicities k. Henceforth

we assume I = 1. The two eigenvalues of CA are

λ1 =
1

2
(b− a+

√
∆), λ2 =

1

2
(b− a−

√
∆),

where

∆ = (a+ b− 2)2 − 4ab = {2− (
√
a−
√
b)2}{2− (

√
a+
√
b)2}.

Given a ∈ (0, 2), we show that the choice of b ∈ (0, 2 − a) which minimizes max(|λ1|, |λ2|) is

b∗ = (
√
2−
√
a)2, where | · | denotes the modulus. For this choice b∗, ∆ = 0 and the two eigenvalues

are identical, λ∗1 = λ∗2 = 1−
√
2a. We distinguish three cases.

(i) Suppose (
√
a+
√
b)2 > 2. Then λ1 and λ2 are complex, and

|λ1|2 = |λ2|2 = λ1λ2 = b+ a− 1

> (
√
2−
√
a)2 + a− 1 = (

√
2a− 1)2 = λ∗21 .
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(ii) Suppose (
√
a +
√
b)2 < 2 and b ≥ a. Then λ1(> 0) and λ2 are real, and max(|λ1|, |λ2|) = λ1.

For fixed a, the derivative of λ1 with respect to b is

dλ1
db

=
1

2

(
1 +

b− a− 2√
∆

)
≤ 1

2

(2− a− b) + (b− a− 2)√
∆

=
−a√
∆
< 0,

where the first inequality uses
√
∆ ≤ 2 − a − b. Then λ1 is decreasing in b, which is upper-

bounded by b∗ = (
√
2−
√
a)2. Hence λ1 > λ∗1.

(iii) Suppose (
√
a+
√
b)2 < 2 and b ≤ a. Then λ1 and λ2(< 0) are real, and max(|λ1|, |λ2|) = −λ2.

For fixed a, the derivative of λ2 with respect to b is

dλ2
db

=
1

2

(
1− b− a− 2√

∆

)
=

1

2

(
1 +

2 + a− b√
∆

)
> 0.

Then λ2 is increasing in b, which is upper-bounded by min(a, b∗). If b∗ ≤ a, then |λ2| = −λ2 >

−λ∗2 = |λ∗2|. If a < b∗, then |λ2| = −λ2 is greater than the value of −λ2 corresponding b = a,

which is identical to the value of λ1 (due to b = a) and still greater than |λ∗1| by the conclusion

from (ii).

Combining the three cases shows that max(|λ1|, |λ2|) ≥ |λ∗1| = |λ∗2|.

For HAMS-B, we work with equations (13)–(14) with a1 = 2− ã, a3 = 2− b̃ and a2 =
√
ãb̃, that

is, before the reparametrization from (ã, b̃) to (a, b). Then the lag-1 auto-covariance matrix is

CB = Cov((x∗, u∗), (x0, u0)) =

(−1 + ã)I
√
ãb̃I

−
√
ãb̃I (1− b̃)I

 .

The two eigenvalues of CB are

λ1 =
1

2
(ã− b̃+

√
∆), λ2 =

1

2
(ã− b̃−

√
∆),

where ∆ = (ã + b̃ − 2)2 − 4ãb̃. The two negative eigenvalues, (−λ1,−λ2), depend on (ã, b̃), in the

same way as the two eigenvalues of CA depend on (a, b) in the preceding proof for HAMS-A. Hence

the maximum modulus of eigenvalues is also minimized by the choice b̃ = (
√
2−
√
ã)2 given ã. By the

reparametrization ã = 2− a and b̃ = ab/(2− a), the resulting choice of b given a is b = a(2−a)
(
√
2+

√
2−a)2 .

IV.8 Simplification of preconditioning for Algorithm 3

As discussed in Section 3.6 for preconditioning, we apply the linear transformations x̃ = LTx and

∇U(x̃) = L−1∇U(x) to HAMS-A/B in Algorithm 2. We show the the resulting algorithm, stated

as Algorithm 4 here, can be rearranged in an equivalent but computationally more efficient form as

Algorithm 3.
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Algorithm 4: HAMS-A/HAMS-B (with preconditioning non-simplified)

Initialize x0, u0

for t = 0, 1, 2, ..., Niter do

Sample w ∼ Uniform[0, 1] and ζ ∼ N (0, I)

Transform x̃t = LTxt

x̃∗ = x̃t − aL−1∇U(xt) +
√
abut +

√
a(2− a− b)ζ

Propose x∗ = (LT)−1x̃∗

if HAMS-A then

Propose u∗ =
(

2b
2−a − 1

)
ut −

√
ab

2−aL
−1(∇U(xt) +∇U(x∗)) +

2
√

b(2−a−b)

2−a ζ

ζ∗ =
(
1− 2b

2−a

)
ζ −
√

a(2−a−b)

2−a L−1(∇U(xt) +∇U(x∗)) +
2
√

b(2−a−b)

2−a ut

if HAMS-B then

Propose u∗ = ut −
√
ab

2−aL
−1(∇U(xt) +∇U(x∗))

ζ∗ = ζ −
√

a(2−a−b)

2−a L−1(∇U(xt) +∇U(x∗))

ρ = exp
{
H(xt, ut)−H(x∗, u∗) + 1

2ζ
Tζ − 1

2 (ζ
∗)Tζ∗

}
if w < min(1, ρ) then

(xt+1, ut+1) = (x∗, u∗) # Accept

else

(xt+1, ut+1) = (xt,−ut) # Reject

Suppose that the equivalence holds for (xt, ut). By the relation ∇U(x̃t) = L−1∇U(xt) and the

definition of ξ in Algorithm 3, we have

x̃∗ = x̃t − a∇U(x̃t) + ξ

= x̃t − aL−1∇U(xt) +
√
abut +

√
a(2− a− b)ζ.

Hence, when the proposal is accepted, xt+1 = x∗ = (LT)−1x̃∗ in both algorithms. By the relation

ξ̃ = ∇U(x̃)+L−1∇U(x∗) = L−1(∇U(xt)+∇U(x∗)), we see that when the proposal is accepted, the

expressions of ut+1 are the same in both algorithms. When the proposal is rejected, (xt+1, ut+1) =

(xt,−ut) is also the same in the two algorithms.

To show the equivalence holds for (xt+1, ut+1), it remains to check that the acceptance probabil-

ities are equal in the two algorithms. We need to show

U(xt)− U(x∗) +
1

2− a
(ξ̃)T(ξ − a

2
ξ̃) = H(xt, ut)−H(x∗, u∗) +

1

2
ζTζ − 1

2
(ζ∗)Tζ∗,

which is equivalent to

2

2− a
(ξ̃)T(ξ − a

2
ξ̃) = uT

t ut − (u∗)Tu∗ + ζTζ − (ζ∗)Tζ∗,

because H(xt, ut)−H(x∗, u∗) = U(xt)− U(x∗) + 1
2u

T
t ut − 1

2(u
∗)Tu∗.
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Consider the algorithm HAMS-B. We use the following fact

uT
t ut − (u∗)Tu∗ = (ut − u∗)T(ut + u∗), ζTζ − (ζ∗)Tζ∗ = (ζt − ζ∗)T(ζt + ζ∗). (S46)

By direct calculation, we have

ut − u∗ =
√
ab

2− a
L−1(∇U(xt) +∇U(x∗)) =

√
ab

2− a
ξ̃, (S47)

(ut − u∗)T(ut + u∗) =

√
ab

2− a
(ξ̃)T

(
2ut −

√
ab

2− a
ξ̃

)
, (S48)

and

ζ − ζ∗ =
√
a(2− a− b)
2− a

L−1(∇U(xt) +∇U(x∗)) =

√
a(2− a− b)
2− a

ξ̃, (S49)

(ζ − ζ∗)T(ζ + ζ∗) =

√
a(2− a− b)
2− a

(ξ̃)T

(
2ζ −

√
a(2− a− b)
2− a

ξ̃

)
. (S50)

Combining (S46)–(S49) yields

uT
t ut − (u∗)Tu∗ + ζTζ − (ζ∗)Tζ∗

= (ξ̃)T

(
2
√
ab

2− a
ut +

2
√
a(2− a− b)
2− a

ζ −
(

ab

(2− a)2
+
a(2− a− b)
(2− a)2

)
ξ̃

)
=

2

2− a
(ξ̃)T

(√
abut +

√
a(2− a− b)ζ − a

2
ξ̃
)

(S51)

=
2

2− a
(ξ̃)T

(
ξ − a

2
ξ̃
)
.

Hence the acceptance probabilities match for HAMS-B in Algorithms 3 and 4.

Finally consider the algorithm HAMS-A. Define intermediate variables

u† =

(
2b

2− a
− 1

)
ut +

2
√
b(2− a− b)
2− a

ζ,

ζ† =

(
1− 2b

2− a

)
ζ +

2
√
b(2− a− b)
2− a

ut.

Then the following identities hold:

(u†)Tu† + (ζ†)Tζ† = uT
t ut + ζTζ, (S52)

√
abu† +

√
a(2− a− b)ζ† =

√
abut +

√
a(2− a− b)ζ (= ξ). (S53)

Identity (S52) follows, because after expanding the inner products on the left hand side, the cross

terms cancel out and the squared terms have coefficients(
2b

2− a
− 1

)2

+

(
2
√
b(2− a− b)
2− a

)2

= 1.
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Identity (S53) follows because by direct calculation

u† − ut =
2
√
2− a− b
2− a

(
√
2− a− b ut +

√
bζ),

ζ† − ζ =
2
√
b

2− a
(−
√
bζ +

√
2− a− b ut).

Moreover, it can be verified by definition that

u† − u∗ =
√
ab

2− a
ξ̃, ζ† − ζ∗ =

√
a(2− a− b)
2− a

ξ̃.

Then (S46)–(S51) remain valid with ut and ζ replaced by u† and ζ†. From these equations together

with the identities (S52)–(S53), we find

uT
t ut − (u∗)Tu∗ + ζTζ − (ζ∗)Tζ∗

= (u†)Tu† − (u∗)Tu∗ + (ζ†)Tζ† − (ζ∗)Tζ∗

=
2

2− a
(ξ̃)T

(√
abu† +

√
a(2− a− b)ζ† − a

2
ξ̃
)

=
2

2− a
(ξ̃)T

(
ξ − a

2
ξ̃
)
.

Hence the acceptance probabilities match for HAMS-A in Algorithms 3 and 4.

V Details for simulation studies

V.1 Expressions for multilevel logistic regression

Consider the multilevel logistic regression described in Section 5.1. The latent variables (or random

effects) are x = (x1, x2, ..., x78)
T, and the parameters are θ = (βT, σT)T with the fixed effects β =

(β1, . . . , β5)
T and standard-deviation components σ = (σ1, . . . , σ5)

T. Let D1 be the model matrix

corresponding to the fixed effects β and D2 that of the random effects x. The model can be

equivalently written as

P (yi = 1) = expit(ηi), i = 1, ..., n (= 2015),

the vector of linear predictors is η = D1β +D2x.

For convenience, denote η(1) = D1β and η(2) = D2x. The latent variables are marginally normal

x ∼ N (0, C), with covariance matrix

C = diag

σ21, ..., σ21︸ ︷︷ ︸
4

, σ22, ..., σ
2
2︸ ︷︷ ︸

4

, σ23, ..., σ
2
3︸ ︷︷ ︸

16

, σ24, ..., σ
2
4︸ ︷︷ ︸

49

, σ25, ..., σ
2
5︸ ︷︷ ︸

5

 .
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The priors on the parameters are β ∼ N (0, V ), V = diag(104, 104, 104, 104, 104), and σj ∝ 1 for

j = 1, ..., 5. Then the joint density is given by

p(x, θ|y) ∝ π(θ) · N (x|0, C) · p(y|x, θ)

∝ exp

(
−1

2
βTV −1β

)
|det(C)|−1/2 exp

(
−1

2
xTC−1x

)
exp

[
n∑
i=1

{yiηi − log(1 + eηi)}

]
.

For latent variable sampling from p(x|y, θ), the potential function is

U(x) =
1

2
xTC−1x−

n∑
i=1

{yiη(2)i − log(1 + eηi)},

where the dependency on (y, θ) is suppressed. The gradient and Hessian are

∇U(x) = C−1x−DT
2 {y − expit(η)},

∇2U(x) = C−1 +DT
2diag{expit(η)(1− expit(η))}D2.

Here expit(η) is evaluated element-wise. As mentioned in Section 5.1, the preconditioning matrix

for all methods (except mGrad) is fixed at Σ−1 = M = ∇2U(0). For mGrad, the C matrix is the

prior variance used in (3).

The conditional density of parameters given (y,x) is

p(β, σ|y,x) = exp

[
−1

2
βTV −1β +

n∑
i=1

{yiη(1)i − log(1 + eηi)}

]
|det(C)|−1/2 exp

(
−1

2
xTC−1x

)
.

Notice that C is only a function of σ. Then β and σ are independent given (y,x). The conditional

density of σ is

p(σ|y,x) ∝ det(C)|−1/2 exp(−xTC−1x/2)

= σ−4
1 σ−4

2 σ−16
3 σ−49

4 σ−5
5 exp

(
−1

2

∑4
k=1 x

2
k

σ21
+
−1

2

∑8
k=5 x

2
k

σ22
+
−1

2

∑2
k=9 4x

2
k

σ23

+
−1

2

∑7
k=25 3x

2
k

σ24
+
−1

2

∑7
k=74 8x

2
k

σ25

)
.

Using a density transformation σ → σ2, we obtain

p(σ2|y,x) ∝ (σ21)
−5/2(σ22)

−5/2(σ23)
−17/2(σ24)

−25(σ25)
−3 exp

(
−1

2

∑4
k=1 x

2
k

σ21
+
−1

2

∑8
k=5 x

2
k

σ22

+
−1

2

∑2
k=9 4x

2
k

σ23
+
−1

2

∑7
k=25 3x

2
k

σ24
+
−1

2

∑7
k=74 8x

2
k

σ25

)
.
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Therefore, given (y,x), each σ2j follows inverse-Gamma distribution:

σ21 ∼ InvGamma(a =
3

2
, b =

1

2

4∑
k=1

x2k), σ22 ∼ InvGamma(a =
3

2
, b =

1

2

8∑
k=5

x2k),

σ23 ∼ InvGamma(a =
15

2
, b =

1

2

24∑
k=9

x2k), σ42 ∼ InvGamma(a = 24, b =
1

2

73∑
k=25

x2k),

σ25 ∼ InvGamma(a = 2, b =
1

2

78∑
k=74

x2k).

Here we use the parameterization:

X ∼ InvGamma(a, b)⇐⇒ pX(x) =
ba

Γ(a)
x−a−1 exp(−b/x).

The conditional density of β is

p(β|y,x) ∝ exp

[
−1

2
βTV −1β +

n∑
i=1

{yiη(1)i − log(1 + eηi)}

]
.

The potential function, gradient, and Hessian are

U(β) =
1

2
βTV −1β −

n∑
i=1

{yiη(1)i − log(1 + eηi)},

∇U(β) = V −1β −DT
1 (y − expit(η)),

∇2U(β) = V −1 +DT
1diag{expit(η)(1− expit(η))}D1,

where the dependency on (y,x) is suppressed. The preconditioning matrix we use for all methods

(except mGrad) is

Σ−1 =M = V −1 +DT
1diag[expit(η

(1))(1− expit(η(1)))]D1,

obtained by evaluating ∇2U(β) with x = 0 and β at some fixed value. For mGrad, we use V in

place of the prior variance C in (3 ).

With all the expressions above, we perform Gibbs sampling with three blocks, p(x|y, β, σ),

p(β|y,x), and p(σ|y,x). The density p(σ|y,x) is sampled using the R package invgamma, whereas

p(x|y, β, σ) and p(β|y,x) are sampled using MCMC.

V.2 Expressions for stochastic volatility model

As used in the experiments in Section VI.3, the stochastic volatility model is defined as

xt = ϕxt−1 + ηt, t = 2, ..., T, x1 ∼ N
(
0,

σ2

1− ϕ2

)
,

yt = ztβ exp(xt/2), zt
iid∼ N (0, 1), ηt

iid∼ N (0, σ2), t = 1, ..., T.
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Denote x = (x1, ..., xT )
T,y = (y1, ..., yT )

T, z = (z1, ..., zT )
T and θ = (β, σ, ϕ)T. The joint density of

(x,y, θ) is

p(x,y, θ) = π(θ) · p(x1)
T∏
t=2

p(xt|xt−1, ϕ, σ)︸ ︷︷ ︸
N (x|0,C)

·

N (y|0,β2 exp(x))︷ ︸︸ ︷
T∏
t=1

p(yt|xt, β)

∝ π(θ)| det(C)|−1/2 exp

{
−1

2
xTC−1x

}
β−T exp

{
−1

2

T∑
t=1

(xt + β−2y2t exp(−xt))

}
.

The matrix C and its inverse are given by

C =
σ2

1− ϕ2



1 ϕ ϕ2 · · · ϕT−2 ϕT−1

ϕ 1 ϕ · · · ϕT−3 ϕT−2

ϕ2 ϕ 1 · · · ϕT−4 ϕT−3

...
...

...
. . .

...
...

ϕT−2 ϕT−3 ϕT−4 · · · 1 ϕ

ϕT−1 ϕT−2 ϕT−3 · · · ϕ 1



⇐⇒ C−1 =
1

σ2



1 −ϕ 0 · · · 0 0

−ϕ 1 + ϕ2 −ϕ · · · 0 0

0 −ϕ 1 + ϕ2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 + ϕ2 −ϕ

0 0 0 · · · −ϕ 1


.

The conditional posterior of the latent variables is

p(x|y, θ) ∝ exp

{
−1

2
xTC−1x

}
exp

{
−1

2

T∑
t=1

(xt + β−2y2t exp(−xt))

}
.

Then the negative log-density (or potential function) is

U(x) =
1

2
xTC−1x+

1

2

T∑
t=1

(xt + β−2y2t exp(−xt)),

where dependency on (y, θ) is suppressed in the notation. The gradient is

∇U(x) = C−1x− 1

2
β−2y exp(−x) + 1

2
1,

where 1 is a vector of all 1’s. The Hessian is

∇2U(x) = C−1 +
1

2
diag[β−2y2 exp(−x)].
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The square y2 is taken component-wise. Using the relation between y and x, the diagonal elements

in the second term can be expressed as

β−2y2 exp(−x) = β−2 exp(−x)z2β2 exp(x) = z2.

Hence

E[∇2U(x)] = C−1 +
1

2
I,

which leads to the preconditioning in Section VI.3. The expectation above is taken over the marginal

distribution of z.

For the parameters, the priors are

π(β) ∝ β−1, σ2 ∼ Inv-χ2(10, 0.05),
ϕ+ 1

2
∼ Beta(20, 1.5).

Then σ and ϕ are also transformed by σ = exp(γ) and ϕ = tanh(α). The resulting potential for the

transformed parameters is

U(β, α, γ) = (T +1) log β−20.5 log(1+tanhα)−2 log(1− tanhα)
1

2
xTC−1x+

1

2

T∑
t=1

β−2y2t exp(−xt),

where dependency on (y,x) is suppressed in the notation. The gradient is

∂U(β, α, γ)

∂β
=
T + 1

β
−
∑T

t=1 y
2
t exp(−xt)
β3

,

∂U(β, α, γ)

∂α
= 22.5 tanhα− 18.5− exp(−2γ)x21 tanhα(1− tanh2 α),

− exp(−2γ)
T∑
t=2

(xt − tanhαxt−1)xt−1(1− tanh2 α),

∂U(β, α, γ)

∂γ
= −xTC−1x− 1

2
exp(−2γ) + 10 + T.

Finally the expected Hessian computed with respect to the marginals of x and z is

E[∇2U(β, α, γ)] =


(2T − 1)/β 0 0

0 exp(−2γ) + 2T 2 tanhα

0 2 tanhα 21.5− 19.5 tanh2 α+ (T − 1)(1− tanh2 α)

 .

When sampling the parameters, we use M = Σ−1 = E[∇2U(β, α, γ)] for preconditioning.
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V.3 Expressions for log-Gaussian Cox model

Denote x = (xij),y = (yij), i, j = 1, ...,m and let C be the matrix corresponding to the covariance

function as described in Section 5.2. The joint posterior density is

p(x, σ2, β|y) ∝

π(σ2)π(β)(det|C|)−1/2 exp

{
−1

2
xTC−1x

}
exp

∑
i,j

(yij(xij + µ)− n−1 exp(xij + µ))

 .

The potential function from the conditional posterior of the latent variables given (y, σ2, β) is

U(x) =
1

2
xTC−1x−

∑
i,j

(yijxij − n−1 exp(xij + µ)),

where dependency on (y, σ2, β) is suppressed in the notation. The gradient is

∇U(x) = C−1x− y + n−1 exp(x+ µ).

The Hessian is

∇2U(x) = C−1 + n−1diag[x+ µ].

Because marginally x ∼ N (0, C), we take the expectation

E[∇2U(x)] = C−1 + n−1diag[σ2/2 + µ],

which is used for preconditioning in Section 5.2.

For the parameters, we use the priors σ2 ∼ Gamma(2, 0.5) and β ∼ Gamma(2, 0.5) and the

transformations σ2 = exp(φ1), β = exp(φ2). Then the potential function from the conditional

posterior of transformed parameters given (y,x) is

U(φ1, φ2) =
1

2
(exp(φ1) + exp(φ2))− 2(φ1 + φ2) +

1

2
xTC−1x+

1

2
log det(C),

where dependency on (y,x) is suppressed in the notation. The gradient is

∂U(φ1, φ2)

∂φ1
=

exp(φ1)

2
− 2 +

n

2
− 1

2
xTC−1x,

∂U(φ1, φ2)

∂φ2
=

exp(φ2)

2
− 2 +

1

2
tr

(
∂C

∂φ2

)
− 1

2
xTC−1 ∂C

∂φ2
C−1x,

where

∂C

∂φ2
[(i, j), (i′, j′)] =

m−1 exp(φ1) exp(−φ2)
√

(i− i′)2 + (j − j′)2 exp(−
√
(i− i′)2 + (j − j′)2/(m exp(φ2))).
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The marginal expected Hessian is

E[∇2U(φ1, φ2)] =

1
2(exp(φ1) + n) 1

2tr(C
−1 ∂C

∂φ2
)

1
2tr(C

−1 ∂C
∂φ2

) 1
2(exp(φ1) + tr(C−1 ∂C

∂φ2
C−1 ∂C

∂φ2
))

 .

When sampling the parameters, we use M = Σ−1 = E[∇2U(φ1, φ2)] for preconditioning.

V.4 Step size tuning

As mentioned in Section 5, we periodically adjust step size ϵ based on the acceptance rate during the

burn-in period. When acceptance is too low (smaller than a lower threshold), we decrease ϵ by the

mapping ϵ ← max(1 −
√
1− ϵ, ϵ

1+δ ); when acceptance is too high (larger than a upper threshold),

we increase ϵ by the mapping ϵ ← ϵ + ϵ ·min(1 − ϵ, δ), where δ is an adjustment value taken to be

δ = 0.2 in all our simulations. The increase and decrease mappings are, by design, inverse of each

other, as illustrated in Figure S1. The two mappings are mostly linear, but are curved when ϵ is

close to 1 to ensure that ϵ is always between 0 and 1 after the update.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mappings to Adjust ε

ε

Figure S1: Tuning of step size ϵ with δ = 0.2. Blue curve is mapping used to increase ϵ. Red curve

is mapping used to decrease ϵ

VI Additional simulation results

We present experiments with a multivariate normal distribution and a stochastic volatility model,

and additional simulation results including pMALA*, GMC and mGrad from the experiments with

the multilevel logistic regression and log-Gaussian Cox model.
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VI.1 Multivariate normal distribution

Consider the problem of sampling from a 100 dimensional normal distribution with high correlations:

π(x) = N (0, C) where the entries of C are

C[i, j] = 0.9|i−j|, i, j = 1, ..., 100.

We do not employ any preconditioning here, although we still refer to pMALA and pMALA* as such.

This experiment is used to compare different algorithms when the variance of the target distribution

may not be readily approximated. Hence potential advantages associated with the rejection-free

property are removed from HAMS-A/B.

In terms of tuning, we set ϵ = 0.19 for HAMS-A, HAMS-B, UDL, GMC, pMALA and pMALA*

to maintain acceptance rates around 70%. Through empirical trials we find that HAMS-A, UDL and

GMC have good performance using a large carryover (c value), while HAMS-B favors a relatively

small carryover. Hence we set c = 0.95 for HAMS-A, UDL and GMC, c = 0.25 for HAMS-B. For

HMC, we set nleap = 50 and ϵ = 0.17 which also yields a 70% acceptance rate. For RWM, we set

ϵ = 0.06 and the resulting acceptance is around 40%. To account for the additional computation cost

due to leapfrog steps, HMC is run for 200 iterations and all other methods are run for 200×50 = 10000

iterations. The simulation process is repeated for 100 times with a fixed starting value of 0.

Figure S2 shows boxplots of sample means and variances of 100 coordinates and sample co-

variances of 100 coordinates with the first coordinate after centered about the true values. Hence

deviations from 0 (marked by red lines) show divergence from the truth. From the boxplots, we see

that HAMS-A, UDL and GMC are comparable to each other. They are mostly accurate in the means

and covariances while slightly underestimate the variances. Sample means of HAMS-B are correctly

centered but exhibit more variation. HAMS-B underestimates the variances more than HAMS-A,

UDL, and GMC, and also the covariances associated with the first several coordinates. Compared

to HAMS-B, pMALA shows similar underestimation of variances and covariances, but has an even

wider spread in sample means. For pMALA*, because ϵ = 0.18 is small, its performance is similar

to that of the unmodified pMALA. While HMC is good in terms of sample means, it underestimates

variances and is inaccurate in covariances with a considerable number of outliers. RWM performs

poorly to capture neither variance nor covariance.

Figure S3 shows trace plots of first 2000 iterations (first 40 iterations for HMC) from an individual

run. The first two coordinates are plotted and red ellipses mark regions containing 95% probability

of the marginal target density. HAMS-A best fills up the area. UDL and GMC are also reasonable

but leave a small part in the upper right blank. HAMS-B, pMALA and pMALA* all cover smaller
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areas with parts of the corners missing. The HMC trace misses the top right quadrant and its

movement is only aligned to the long axis of the ellipse. RWM performs poorly and covers the least

amount of the area.
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Figure S2: Time-adjusted and centered boxplots of sample means, variances, and covariances of 100

coordinates over 100 repetitions for sampling from the multivariate normal distribution. Red lines

indicate zero.
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Figure S3: Time-adjusted trace plots of the first two coordinates from first 2000 iterations (first 40

iterations for HMC) for sampling from the multivariate normal distribution. Red ellipses indicate

95% probability regions.
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VI.2 Multilevel logistic regression

Consider the setting of multilevel logistic regression in Section 5.1. For sampling latent variables

only, Figure S4 shows the average acceptance rates (red curves) and step sizes ϵ (black curves)

during the burn-in period, using the tuning procedure described in Section V.4. The upper and

lower thresholds of acceptance rates for such adjustments are marked by the dashed lines. For

mGrad as described by (3), the step-size parameter δ is not bounded between 0 and 1, unlike ϵ in all

other methods. The black curve plotted for mGrad is δ/0.03. We follow Titsias and Papaspiliopoulos

(2018) and tune mGrad to achieve acceptance rate between 50% and 60%. (We explored using the

60–80% thresholds for mGrad, but the performance is worse; hence all results of mGrad shown

here and subsequently are tuned to achieve 50–60% acceptance rates.) From Figure S4, we see

that our tuning achieves target acceptance rates except for HAMS-A/B and pMALA*, where the

step sizes ϵ increase to almost 1 but high acceptance rates are maintained. A general explanation

for this phenomenon is that these three methods use coefficient ϵ2

1+
√
1−ϵ2 instead of ϵ2

2 for gradient

updates and satisfy the Gaussian-calibrated rejection-free property. Compared with the log-Gaussian

Cox and stochastic volatility examples, our preconditioning in this example may be more accurate,

even though the preconditioning matrix is derived in a simple manner, differen from Girolami and

Calderhead (2011).

Table S1 shows the runtime and ESS comparison, expanded from Table 1: HAMS-B is the best;

pMALA* is comparable to HAMS-A and improves upon pMALA considerably, due to its ability

to achieve high acceptance rates with large step sizes; GMC is better than UDL; and mGrad only

outperforms HMC and RWM. Figure S6 shows that average sample means are similar among all

methods except for RWM. However, according to Figure S5 and S7, the spreads of sample means are

very different: HAMS-B is the most consistent across repeated simulations, followed by HAMS-A

and pMALA*, and other methods have much more variability. Additional trace plots are provided

in Figures S8-S10, we see that HAMS-B, HAMS-A and pMALA* have the best mixing and HAMS-B

shows the most noticeable negative autocorrelations.

Next we present additional results of posterior sampling including GMC, pMALA* and mGrad.

Notice that mGrad can be used in this setting, because both latent variables x and parameters β can

be associated with latent Gaussian field models. For posterior sampling in the log-Gaussian Cox and

stochastic volatility models, mGrad is not applicable. To make meaningful comparison, we set C = I

for mGrad when sampling p(x|y, β, σ) and p(β|y, σ,x) in the first stage. Then in the second stage,

we evaluate and fix the matrix C using the sample mean of σ from the first stage for p(x|y, β, σ),

and use V for p(β|y, σ,x). A complete summary of all parameters is provided in Table S2, expanded
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from Table 2. Boxplots of posterior means are shown in Figure S11, and posterior density plots are

shown in Figure S12. According to Figure S11, HAMS-A is the best across all parameters; HMC is

also good but overestimates σ1, σ4 and σ5 compared HAMS-A. GMC and UDL have larger spread in

σ; mGrad has decent performance in σ but suffers in β, which might be attributed to the suboptimal

preconditioning only using the prior variance V .

Figure S13 shows trace plots of β1, β5, σ4 and σ5 from an individual run which demonstrates our

two-stage scheme for posterior sampling, where each stage consists of two sub-stages (hence four sub-

stages). In these plots, four sub-stages are divided by blue vertical lines. In the first sub-stage, we

apply no preconditioning and adjust step size ϵ. In the second sub-stage we fix ϵ and collect samples

for crude parameter estimates; we then evaluate preconditioning matrices using the sample means of

parameters from the second sub-stage and fix them. In the third sub-stage we apply preconditioning

and adjust ϵ. In the fourth sub-stage, we fix ϵ and continue applying preconditioning to collect

working samples.

Method Time (s) ESS1
(min, median, max)

minESS1

Time
ESS2

(min, median, max)
minESS2

Time

HAMS-A 21.2 (13034, 17315, 22773) 614.8 (2750, 5242, 9950) 129.7

HAMS-B 20.3 (43659, 57046, 71749) 2149.1 (11639, 17191, 29344) 573.1

UDL 20.1 (1815, 2557, 3336) 90.3 (541, 796, 1416) 26.9

GMC 20.1 (2553, 3378, 4223) 127.2 (671, 985, 1945) 33.4

HMC 257.8 (10085, 15846, 32386) 39.1 (28, 255, 1068) 0.1

pMALA 19.4 (1337, 1838, 2254) 69.0 (342, 523, 970) 17.6

pMALA* 18.9 (11457, 14795, 19089) 605.5 (2870, 4735, 7852) 151.7

mGrad 17.5 (419, 712, 5170) 23.9 (103, 223, 1777) 5.9

RWM 6.9 (11, 22, 36) 1.5 (0.3, 1.1, 1.9) 0.04

Table S1: Runtime and ESS comparison for sampling latent variables in the multilevel logistic

regression (including mGrad). Results are averaged over 50 repetitions.
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Figure S4: Average step sizes (black) and acceptance rates (red) for sampling latent variables in the

multilevel logistic regression. For every 250 iterations, acceptance rates are calculated and step sizes

adjusted. Results are averaged over 50 repetitions.
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Figure S5: Time-adjusted and centered plots of sample means of all latent variables over 50 repeti-

tions for sampling latent variables in the multilevel logistic regression.
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Figure S6: Time-adjusted averages of sample means of all latent variables over 50 repetitions for

sampling latent variables in the multilevel logistic regression.
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Figure S8: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the multilevel logistic regression.
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Figure S9: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the multilevel logistic regression.
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Figure S10: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the multilevel logistic regression.
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Method Time (s)
Sample Mean

β1 (sd) β2 (sd) β3 (sd) β4 (sd) β5 (sd) σ1 (sd)

HAMS-A 43.9 -3.38 (0.315) -1.67 (0.018) -0.09 (0.004) -0.18 (0.012) 6.77 (0.487) 0.15 (0.046)

HAMS-B 43.8 -3.37 (0.522) -1.69 (0.0022) -0.09 (0.004) -0.17 (0.012) 6.81 (0.382) 0.20 (0.120)

UDL 43.9 -3.47 (0.437) -1.68 (0.022) -0.09 (0.004) -0.17 (0.015) 6.83 (0.630) 0.17 (0.065)

GMC 43.8 -3.31 (0.591) -1.67 (0.019) -0.09 (0.003) -0.18 (0.012) 6.88 (0.838) 0.15 (0.061)

HMC 404.8 -3.42 (0.118) -1.68 (0.005) -0.09 (0.001) -0.17 (0.010) 6.86 (0.092) 0.22 (0.0025)

pMALA 44.4 -3.21 (1.151) -1.67 (0.036) -0.09 (0.005) -0.18 (0.007) 6.55 (0.805) 0.19 (0.072)

pMALA * 44.3 -3.46 (0.377) -1.69 (0.022) -0.09 (0.005) -0.17 (0.022) 6.96 (0.621) 0.19 (0.073)

mGrad 44.7 -3.51 (0.615) -1.70 (0.071) -0.09 (0.007) -0.14 (0.104) 7.00 (1.218) 0.19 (0.068)

RWM 22.7 -3.33 (0.489) -1.68 (0.036) -0.09 (0.006) -0.18 (0.024) 6.76 (0.743) 0.25 (0.227)

Method
Sample Mean

minESS1
Time

minESS2
Time

σ2 (sd) σ3 (sd) σ4 (sd) σ5 (sd) (β, σ) (β, σ)

HAMS-A 0.27 (0.090) 0.14 (0.043) 0.22 (0.023) 0.39 (0.079) (1.885, 0.461) (0.222, 0.093)

HAMS-B 0.32 (0.209) 0.13 (0.046) 0.23 (0.023) 0.47 (0.345) (1.711, 0.422) (0.092, 0.038)

UDL 0.24 (0.167) 0.14 (0.070) 0.21 (0.055) 0.42 (0.278) (1.649, 0.713) (0.113. 0.029)

GMC 0.28 (0.116) 0.13 (0.055) 0.21 (0.063) 0.44 (0.387) (1.773. 0.462) (0.070, 0.027)

HMC 0.33 (0.042) 0.14 (0.015) 0.22 (0.014) 0.44 (0.037) (1.844, 0.297) (0.233, 0.087)

pMALA 0.45 (0.558) 0.14 (0.050) 0.22 (0.041) 0.65 (0.629) (1.412, 0.366) (0.017, 0.026)

pMALA * 0.28 (0.071) 0.13 (0.045) 0.23 (0.042) 0.42 (0.167) (0.749, 0.240) (0.173, 0.070)

mGrad 0.26 (0.092) 0.15 (0.029) 0.22 (0.035) 0.40 (0.226) (0.199, 0.426) (0.033, 0.058)

RWM 0.29 (0.064) 0.16 (0.075) 0.22 (0.055) 0.48 (0.292) (1.632, 0.537) (0.168, 0.047)

Table S2: Comparison of posterior sampling in the multilevel logistic regression. Standard deviations

of sample means are in parentheses. Results are averaged over 20 repetitions.
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Figure S11: Time-adjusted boxplots of posterior means of parameters over 20 repetitions for posterior

sampling in the multilevel logistic regression. The estimates obtained using lme4 are marked by red

lines.
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Figure S12: Time-adjusted posterior density plots of parameters (20 repetitions overlaid) in the

multilevel logistic regression. The estimates obtained using lme4 are marked by vertical lines.
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(d) Trace plots of σ5

Figure S13: Trace plots of β1, β5, σ4 and σ5, from an individual run for posterior sampling in the

multilevel. The estimates obtained using lme4 are marked by red horizontal lines. There are four

sub-stages divided by blue vertical lines. The first two are without preconditioning, with 3250

iterations each. The last two are with preconditioning, with 3500 and 10000 iterations respectively.

The first three sub-stages are counted as burn-in.
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VI.3 Stochastic volatility model

Consider a stochastic volatility model, where latent volatilities are generated as

xt = ϕxt−1 + ηt, ηt ∼ N (0, σ2), t = 2, 3, ..., T, (S54)

with x1 ∼ N (0, σ2/(1− ϕ2)), and the observations are generated as

yt = ztβ exp(xt/2), zt ∼ N (0, 1), t = 1, ..., T. (S55)

The parameters of interest are θ = (β, σ, ϕ)T. We simulate T = 1000 observations from (S54)–(S55)

using parameter values β = 0.65, σ = 0.15 and ϕ = 0.98. Let x = (x1, ..., xT )
T and y = (y1, ..., yT )

T.

Two sets of experiments are conducted. First, we fix parameter values and sample latent variables

from p(x|y, θ). Then we perform Bayesian analysis and sample both the parameters and latent

variables from p(x, θ|y).

For the first experiment, we fix parameters at their true values and perform sampling for latent

variables only. The joint distribution of (x1, . . . , xT ) is N (0, C), where the entries of the variance

matrix are C[i, j] = ϕ|i−j|σ2/(1 − ϕ2). The inverse C−1 retains a simple tri-diagonal form. Fol-

lowing Girolami and Calderhead (2011), the inverse variance Var−1(x) can be approximated by

−E[∇2 log p(x|y, θ)] = C−1 + 1
2I. Hence for preconditioning, we set M = Σ−1 = C−1 + 1

2I for all

methods except mGrad, which uses the prior variance C as the preconditioning matrix. As men-

tioned in Section 5, we use nleap = 50 for HMC as in Girolami and Calderhead (2011) and choose

c given ϵ by (30)–(31) for HAMS-A/B, UDL, and GMC. All algorithms are run for 5000 burn-in

iterations, and then samples are collected from 5000 iterations. The simulation process is repeated

for 50 times.

Average acceptance rates and step sizes are shown in Figure S14, where black curves are δ/4

for mGrad and ϵ for the others. Our tuning achieves target acceptance rates for all methods, with

HAMS-A/B and pMALA* using larger ϵ values, which can be explained by the Gaussian-calibrated

rejection-free property. Table S3 shows that HAMS-A is the best in ESS1, HAMS-B is the best

in ESS2, and both lead the remaining methods. Among the rest, pMALA* is the best followed

by mGrad, then UDL and GMC which are comparable to each other, and finally pMALA, HMC

and RWM. According to Figure S15, HAMS-A and HAMS-B have the least amount of variation in

sample means across repetitions. In Figure S16, all methods except RWM have comparable average

sample means, while RWM overestimates. The variance comparison in Figure S17 agrees with the

spreads shown in Figure S15. Trace plots of three difference latent dimensions from an individual

are shown in Figures S18–S20. In terms of mixing behaviors, HAMS-A/B are the best, followed
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by pMALA* and mGrad, then UDL and GMC. After adjusting for time, trace plots of HMC show

much fewer draws, which reflects the high computational cost of HMC.

In the second experiment, we perform Bayesian analysis and sample both latent variables and pa-

rameters from the posterior p(x, θ|y). The priors are, independently, π(β) ∝ β−1, σ2 ∼ Inv-χ2(10, 0.05)

and (ϕ + 1)/2 ∼ Beta(20, 1.5). Moreover, we use the transformations σ = exp(γ) and ϕ = tanh(α)

to ensure that σ > 0 and |ϕ| < 1. We employ Gibbs sampling, alternating between the two blocks

p(x|y, θ) and p(θ|y,x). We do not include mGrad because the parameters are not from a latent

Gaussian model in this case. As previously mentioned, we first run each algorithm without any pre-

conditioning to obtain a crude estimate of the parameters, and then fix the preconditioning matrix

evaluated at this estimate (see Section V.2 for associated expressions). For HMC, the numbers of

leapfrog steps are 50 for latent variables and 6 for parameters as in Girolami and Calderhead (2011).

The initial values of parameters are dispersed over the following intervals β ∈ [0.5, 2], σ ∈ [0.1, 1], and

ϕ ∈ [0, 0.3]. For all methods, 10000 draws are collected after 10000 iterations, which include two sub-

stages without preconditioning and one sub-stage of tuning with preconditioning. The simulation

process is repeated for 20 times.

As shown in Table S4, the posterior means of the parameters are all very close (except for RWM).

But HAMS-A has the smallest standard deviations in β and ϕ followed by HAMS-B. Hence HAMS-

A/B give more consistent results, as corroborated by Figure S21. While for σ, pMALA has a smaller

standard deviation, it is inferior to HAMS-A/B in both ESS1 and ESS2. Figure S22 shows time-

adjusted density plots for the parameters. Each plot shows densities from 20 repeated runs overlaid

together. Clearly, HAMS-A yields the most consistent density curves for all three parameters,

followed by HAMS-B, UDL, and GMC which sometimes produce outlying curves, especially in β

and σ.
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Method Time (s) ESS1
(min, median, max)

minESS1

Time
ESS2

(min, median, max)
minESS2

Time

HAMS-A 239.4 (2420, 3669, 6668) 10.11 (433, 1073, 2250) 1.85

HAMS-B 238.6 (1915, 57046, 71749) 8.03 (597, 999, 2645) 2.50

UDL 239.3 (657, 2557, 3336) 2.74 (181,304, 648) 0.76

GMC 240.3 (752, 3378, 4223) 3.13 (216, 377, 710) 0.90

HMC 5258.5 (1125, 12481, 19699) 0.21 (24, 162, 1493) 0.004

pMALA 282.7 (374, 1838, 2254) 1.32 (91, 175, 395) 0.32

pMALA* 281.6 (1740, 14795, 19089) 6.18 (415, 889, 1914) 1.47

mGrad 237.1 (948,1588, 2611) 4.00 (266, 474, 912) 1.12

RWM 116.8 (7, 12, 20) 0.06 (0.3, 0.6, 1.5) 0.002

Table S3: Runtime and ESS comparison for sampling latent variables in the stochastic volatility

model. Results are averaged over 50 repetitions.
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Figure S14: Average step sizes (black) and acceptance rates (red) for sampling latent variables in

the stochastic volatility model. For every 250 iterations, acceptance rates are calculated and step

sizes adjusted. Results are averaged over 50 repetitions.
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Figure S15: Time-adjusted and centered plots of sample means of all latent variables over 50 repe-

titions for sampling latent variables in the stochastic volatility model.
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Figure S16: Time-adjusted averages of sample means of all latent variables over 50 repetitions for

sampling latent variables in the stochastic volatility model.
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repetitions for sampling latent variables in the stochastic volatility model.
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Figure S18: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the stochastic volatility model.
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Figure S19: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the stochastic volatility model.
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Figure S20: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the stochastic volatility model.
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Method Time (s)
Sample Mean ESS1

minESS1
Time

ESS2
minESS2

Time
β (sd) σ (sd) ϕ (sd) (β, σ, ϕ) (β, σ, ϕ)

HAMS-A 1951.3 0.68 (0.034) 0.19 (0.006) 0.98 (0.001) (30, 73, 220) 0.015 (7, 9, 58) 0.004

HAMS-B 1942.3 0.68 (0.037) 0.19 (0.007) 0.98 (0.001) (25, 58, 188) 0.013 (6, 8, 38) 0.003

UDL 1945.8 0.68 (0.039) 0.20 (0.008) 0.98 (0.002) (29, 37, 87) 0.015 (6, 9, 20) 0.003

GMC 1968.2 0.67 (0.059) 0.20 (0.007) 0.98 (0.003) (35, 68, 169) 0.018 (3, 11, 10) 0.001

HMC 20920.2 0.69 (0.050) 0.19 (0.014) 0.98 (0.003) (19, 12, 78) 0.001 (5, 1, 7) 0.00006

pMALA 2013.0 0.68 (0.039) 0.20 (0.005) 0.98 (0.001) (15, 30, 76) 0.008 (5, 22, 34) 0.002

pMALA* 2015.2 0.70 (0.054) 0.19 (0.006) 0.98 (0.001) (23, 54, 149) 0.012 (3, 10, 34) 0.002

RWM 1311.1 0.76 (0.050) 0.47 (0.229) 0.51 (0.149) (89, 12, 7) 0.005 (0.16, 0.01, 0.32) 0.00001

Table S4: Comparison of posterior sampling in the stochastic volatility model. Standard deviations

of sample means are in parentheses. Results are averaged over 20 repetitions.
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Figure S21: Time-adjusted boxplots of posterior means of parameters over 20 repetitions for posterior

sampling in the stochastic volatility model. The data generating parameter values are marked by

red lines.
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Figure S22: Time-adjusted posterior density plots of parameters (20 repetitions overlaid) in the

stochastic volatility model. The true parameter values are marked by vertical lines.
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(c) Trace plots of ϕ

Figure S23: Trace plots of β, σ and ϕ, from an individual run for posterior sampling in the multilevel.

The data generating parameter values are marked by red horizontal lines. There are four sub-stages

divided by blue vertical lines. The first two are without preconditioning, with 3250 iterations each.

The last two are with preconditioning, with 3500 and 10000 iterations respectively. The first three

sub-stages are counted as burn-in.
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VI.4 Log-Gaussian Cox model

We report additional simulation results for the log-Gaussian Cox model discussed in Section 5.2.

When only sampling latent variables, mGrad is comparable to pMALA, pMALA* improves upon

the original pMALA, and GMC shows comparable performance to UDL. From Figures S25–S27,

while all methods have similar average sample means, HAMS-A and HAMS-B have the smallest

variances in sample means.

Additional results from posterior sampling are provided in Figures S31–S33. GMC has similar

performance to UDL for both parameters (σ2, β). The average posterior mean of pMALA* is closer

to the true value of σ2 than HAMS-A, but the standard deviation from pMALA* is also larger. For

β, pMALA* shows even larger spread. Compared to the stochastic volatility model, the effect of

preconditioning can be seen more clearly from the trace plots in Figure S33.

Method Time (s) ESS1
(min, median, max)

minESS1

Time
ESS2

(min, median, max)
minESS2

Time

HAMS-A 2013.5 (1015, 1530, 3950) 0.50 (207, 464, 1084) 0.10

HAMS-B 1998.5 (629, 953, 1931) 0.31 (143, 290, 1005) 0.07

UDL 1997.8 (361, 576, 1187) 0.18 (87, 172, 563) 0.04

GMC 1999.1 (397, 625, 1465) 0.20 (98, 185, 532) 0.05

HMC 44425.1 (1011, 7381, 12824) 0.02 (29, 330, 3567) 0.001

pMALA 2862.4 (246, 382, 797) 0.09 (55, 113, 263) 0.02

pMALA* 2873.0 (611, 903, 1955) 0.21 (145, 272, 696) 0.05

mGrad 3064.6 (245, 410, 1666) 0.08 (55, 120, 550) 0.02

RWM 1217.6 (7, 11, 22) 0.01 (0.1, 0.3, 0.7) 0.0001

Table S5: Runtime and ESS comparison (including mGrad) for sampling latent variables in the

log-Gaussian Cox model (n = 4096). Results are averaged over 50 repetitions.
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Figure S24: Average step sizes (black) and acceptance rates (red) for sampling latent variables in

the log-Gaussian Cox model (n = 4096). For every 250 iterations, acceptance rates are calculated

and step sizes adjusted. Results are averaged over 50 repetitions.

Figure S25: Time-adjusted and centered plots of sample means of all latent variables over 50 repe-

titions for sampling latent variables in the log-Gaussian Cox model (n = 4096).
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Figure S26: Time-adjusted averages of sample means (shifted) of all latent variables over 50 repeti-

tions for sampling latent variables in the log-Gaussian Cox model (n = 4096).
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Figure S27: Time-adjusted variances of sample means (log-scale) of all latent variables over 50

repetitions for sampling latent variables in the log-Gaussian Cox model (n = 4096).
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Figure S28: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the log-Gaussian Cox model (n = 4096).
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Figure S29: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the log-Gaussian Cox model (n = 4096).
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Figure S30: Time-adjusted trace and ACF plots of one latent variable from an individual run for

sampling latent variables in the log-Gaussian Cox model (n = 4096).

Method Time (1000 s)
Sample Mean ESS1

ESS1

Time
ESS2

ESS2

Time

σ2 (sd) β (sd) (σ2, β) (σ2, β) (σ2, β) (σ2, β)

HAMS-A 161.1 2.08 (0.086) 0.04 (0.010) (178, 24) (1.105, 0.147) (10.9, 1.0) (0.068, 0.006)

HAMS-B 161.0 3.26 (1.309) 0.57 (0.560) (554, 468) (3.441, 2.908) (2.4, 0.7) (0.015, 0.005)

UDL 161.0 2.11 (0.109) 0.04 (0.006) (109, 31) (0.677, 0.190) (7.7, 2.0) (0.048, 0.012)

GMC 160.8 2.18 (0.112) 0.03 (0.007) (91, 31) (0.566, 0.194) (8.0, 1.2) (0.050, 0.007)

HMC 1366.9 2.45 (0.850) 0.21 (0.436) (342, 375) (0.250, 0.274) (1.9, 0.4) (0.001, 0.0003)

pMALA 162.5 2.08 (0.207) 0.04 (0.019) (75, 17) (0.462, 0.103) (2.8, 0.4) (0.017, 0.003)

pMALA* 162.4 1.97 (0.092) 0.05 (0.029) (116, 32) (0.714, 0.195) (19.0, 0.7) (0.117, 0.004)

RWM 82.5 2.42 (1.074) 0.16 (0.158) (304, 279) (3.685, 3.377) (1.1, 0.6) (0.013, 0.007)

Table S6: Comparison of posterior sampling in the log-Gaussian Cox model (n = 4096). Standard

deviations of sample means are in parentheses. Results are averaged over 15 repetitions.
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Figure S31: Time-adjusted boxplots of posterior means of parameters over 15 repetitions for posterior

sampling in the log-Gaussian Cox model (n = 4096). HAMS-B, HMC and RWM are not included

due to large outliers. The data generating parameter values are marked by red lines.
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Figure S32: Time-adjusted posterior density plots (15 repetitions overlaid) in log-Gaussian Cox

model (n = 4096). The true parameter values are marked by vertical lines.
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(a) Trace plots of σ2

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

HAMS−A : β

iterations

0 2000 6000 10000 14000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

HAMS−B : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

UDL : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

GMC : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

HMC : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

pMALA : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

pMALA* : β

iterations

0 2000 6000 10000 14000

0.
00

0.
05

0.
10

0.
15

RWM : β

iterations

(b) Trace plots of β

Figure S33: Trace plots from an individual run for posterior sampling in the log-Gaussian Cox

model (n = 4096). Data generating parameter values are marked by red horizontal lines. There are

four sub-stages divided by blue vertical lines. The first two are without preconditioning, with 3000

iterations each. The last two are with preconditioning, with 3000 and 5000 iterations respectively.

The first three sub-stages are counted as burn-in.
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