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Drawing inferences about the effects of treatments and actions is a common challenge in economics, epidemiology, and other fields. We
adopt Rubin’s potential outcomes framework for causal inference and propose two methods serving complementary purposes. One can
be used to estimate average causal effects, assuming no confounding given measured covariates. The other can be used to assess how
the estimates might change under various departures from no confounding. Both methods are developed from a nonparametric likelihood
perspective. The propensity score plays a central role and is estimated through a parametric model. Under the assumption of no confounding,
the joint distribution of covariates and each potential outcome is estimated as a weighted empirical distribution. Expectations from the
joint distribution are estimated as weighted averages or, equivalently to first order, regression estimates. The likelihood estimator is at
least as efficient and the regression estimator is at least as efficient and robust as existing estimators. Regardless of the no-confounding
assumption, the marginal distribution of covariates times the conditional distribution of observed outcome given each treatment assignment
and covariates is estimated. For a fixed bound on unmeasured confounding, the marginal distribution of covariates times the conditional
distribution of counterfactual outcome given each treatment assignment and covariates is explored to the extreme and then compared with the
composite distribution corresponding to observed outcome given the same treatment assignment and covariates. We illustrate the methods
by analyzing the data from an observational study on right heart catheterization.
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1. INTRODUCTION

Drawing inferences about the effects of treatments and ac-
tions is a common challenge in economics, epidemiology, and
other fields. Although randomized experiments remain the gold
standard for research, observational studies are often necessary
due to ethical or practical considerations. In observational data,
systematic differences can exist between treated and untreated
groups with respect to various covariates, and direct compar-
isons of observed outcomes from the two groups are not appro-
priate. Methods for defining and estimating causal effects from
observational data are complicated and even controversial. In
this article we adopt Rubin’s causal model and contribute two
methods for estimation and sensitivity analysis from a nonpara-
metric likelihood perspective.

Rubin’s (1974, 1977, 1978) causal model has become widely
accepted as a framework for causal inference in both experi-
ments and observational studies; this model is summarized in
Section 2. In that framework, a number of basic concepts and
assumptions are formalized. Causal effects are defined as com-
parisons of potential outcomes that would be observed under
different treatments. For each subject, only one potential out-
come can actually be observed, depending on which treatment
is assigned. Therefore, the mechanism of treatment assignment
plays a crucial role in causal inference. Randomization is an as-
signment mechanism that allows causal effects to be estimated
straightforwardly. However, in an observational study, the as-
signment mechanism is unknown, and inferences about causal
effects necessarily rely on some assumptions about it.

First, consider the assumption of no confounding, in which
treatment assignment and potential outcomes are independent
given measured covariates. Under this assumption, the average
causal effect can be consistently estimated, and various meth-
ods have been proposed for doing so. Some methods focus
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on the relationship between covariates and potential outcomes,
and others work with the relationship between covariates and
treatment assignment or the propensity score (Rosenbaum and
Rubin 1983a). These approaches both rely on the assumption of
no confounding but make different modeling assumptions. The
first approach requires a correctly specified outcome regres-
sion model, whereas the second requires a correctly specified
propensity score model. There are also methods that combine
outcome regression with propensity score matching, subclas-
sification, or weighting (see Imbens 2004 for a review). In
particular, Robins, Rotnitzky, and others introduced a class of
estimators under a propensity score model and derived opti-
mal estimators for when an outcome regression model is also
correctly specified. The optimal estimators and several variants
are locally efficient; that is, they achieve the semiparametric
variance bound under the propensity score model if both the
propensity score model and the outcome regression model are
correct. Moreover, some of them are doubly robust; that is, re-
main consistent and asymptotically normal if either the propen-
sity score model or the outcome regression model is correct.
(See van der Laan and Robins 2003 for a theory of doubly ro-
bust locally efficient estimation.)

All existing propensity score methods are based on estimat-
ing equations. Robins and Ritov (1997) pointed out that any
method based on the usual likelihood should not depend on the
propensity score. In Section 3 we propose a likelihood formula-
tion for propensity score weighting by ignoring part of all infor-
mation about the joint distributions of covariates and potential
outcomes. The idea is connected to Kong, McCullagh, Meng,
Nicolae, and Tan’s (2003) formulation for Monte Carlo inte-
gration by ignoring part of all information about the baseline
measure. We derive a nonparametric likelihood estimator under
a propensity score model and suggest a closed-form regression
estimator as a first-order approximation. We also establish that
(a) the likelihood estimator is locally efficient and the regres-
sion estimator is locally efficient and doubly robust, and (b) the
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likelihood estimator is at least as efficient and the regression
estimator is at least as efficient and robust as existing estima-
tors. In case (b), efficiency is evaluated when the propensity
score model is correct but the outcome regression model is mis-
specified, and robustness is evaluated when the propensity score
model is misspecified. We present a simulation study to com-
pare the behaviors of different estimators in medium samples.
Our estimators have the overall smallest mean squared errors
under various settings in the study.

For data analysis, the propensity score subclassification
method was originally illustrated by Rosenbaum and Rubin
(1984). The process of fitting the propensity score by logit re-
gression, checking the balance of measured covariates within
subclasses using simple statistical methods (such as analysis of
variance and bar plot), and refining the fitted propensity score
is attractive to a broad audience. Our method follows a similar
process but does not rely on subclassification (to create approxi-
mately homogeneous subclasses in the propensity score), which
still lacks a complete frequentist theory. For a fitted propen-
sity score, the joint distribution of covariates and each potential
outcome is estimated. Only if the propensity score model is
correctly specified are the two marginal distributions of covari-
ates asymptotically the same and does the difference between
the expectations of two potential outcomes indicate the aver-
age causal effect. Our method takes into account estimation of
the propensity score in calculating standard errors by the fre-
quentist theory that we establish. In Section 5 we illustrate our
method by analyzing the data from an observational study on
right heart catheterization.

Second, the assumption of no confounding requires that all
covariates relevant to both treatment assignment and potential
outcomes be measured. Although care can be taken to identify
many such covariates, there is always a possibility of overlook-
ing some in an observational study. In this case it is desirable
to conduct a sensitivity analysis to assess how the estimates
might change under various departures from no confounding.
Following Cornfield et al. (1959), a common approach to sen-
sitivity analysis is to investigate the consequences of leaving
out a relevant but unmeasured covariate. Some methods postu-
late how this covariate affects potential outcomes (Lin, Psaty,
and Kronmal 1998; Rosenbaum 1986), some postulate how
this covariate influences treatment assignment (Rosenbaum
2002a), and others postulate how this covariate is related to both
treatment assignment and potential outcomes (Imbens 2003;
Rosenbaum and Rubin 1983b). An alternative approach that
does not involve any unmeasured covariate is to postulate how
potential outcomes are associated with treatment assignment
(Brumback, Hernan, Haneuse, and Robins 2004; Robins 1999),
or how treatment assignment depends on potential outcomes
(Robins, Rotnitzky, and Scharfstein 1999).

Each sensitivity analysis method assumes a model that
describes unmeasured confounding and contains no confound-
ing as a special case. However, the model itself is suscep-
tible to misspecification (see Rotnitzky, Scharfstein, Su, and
Robins 2001, sec. 5, for a discussion). What information can be
learned from observed data regardless of the no-confounding
assumption? How can the information be exploited for a ro-
bust sensitivity analysis? In Section 4 we show from a non-
parametric likelihood perspective that the estimation method

in Section 3 extends to general confounding cases. For a fit-
ted propensity score, the marginal distribution of covariates
times the conditional distribution of observed outcome given
each treatment assignment and covariates is estimated. In con-
trast, the conditional distribution of counterfactual outcome
given each treatment assignment and covariates is not iden-
tifiable from observed data. The assumption of no confound-
ing equates the two conditional distributions. Next, unmeasured
confounding can be characterized through the density ratio of
each potential outcome given different treatment assignments
or, equivalently, the odds ratio of receiving the treatment given
different values of each potential outcome. We consider a sensi-
tivity analysis model that places bounds on the density ratio or
odds ratio and propose a nonparametric method for obtaining
conservative bounds on the expectation of counterfactual out-
come given each treatment assignment and covariates and then
marginalized over covariates. In Section 5 we apply our method
to the right heart catheterization study.

2. CAUSAL MODEL

We adopt Rubin’s (1974, 1977, 1978) causal model. Let
� = {ω} be a population endowed with a probability measure P.
If � is finite with N units, then define P to be uniform plac-
ing mass N−1 at each unit. Let {0,1} be a treatment set, where
0 represents the control treatment (“control”) and 1 represents
the active treatment (“treatment”).

Potential Outcomes and Covariates. Let Y0 = Y0(ω) be the
response that would be observed if unit ω received treatment 0
and let Y1 = Y1(ω) be the response that would be observed if
unit ω received treatment 1. The two variables are called poten-
tial outcomes (Neyman 1923; Rubin 1974). Assume that there
is no interference between different units; that is, the poten-
tial outcomes of a unit are independent of which treatments
other units receive (Cox 1958; Rubin 1980). In addition, let
X = X(ω) be a vector of measured covariates whose values are
not changed by either treatment.

Defining Causal Effects. Holland and Rubin (1988) distin-
guished three levels of causal inferences: unit level, subpopula-
tion level, and population level. The definition of causal effect at
the unit level is a comparison of Y0(ω) and Y1(ω), typically the
difference Y1(ω) − Y0(ω). Subpopulations can be classified by
the values of covariates. The average causal effect over a sub-
population {ω : X(ω) = x} is E(Y1|X = x) − E(Y0|X = x). The
average causal effect over the population � is E(Y1) − E(Y0).
The three levels are ordered by decreasing strength in the
sense that knowledge of all unit-level causal inferences im-
plies knowledge of all subpopulation-level causal inferences,
and knowledge of all subpopulation-level causal inferences for
a partition of � implies knowledge of population-level causal
inferences, but not vice versa.

Assigning Treatments. Imagine that treatment assignment
is done before selecting units for a study. Let T = T(ω) be the
binary variable taking value 0 or 1 if unit ω receives treatment
0 or 1. The conditional distribution P(T|X,Y0,Y1) is called as-
signment mechanism. An important class of assignment mech-
anisms is the class of unconfounded assignment mechanisms
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defined by P(T|X,Y0,Y1) = P(T|X) or, in the notation of con-
ditional independence, T ⊥ (Y0,Y1)|X. That is, treatment as-
signment T and potential outcomes (Y0,Y1) are independent
conditionally on covariates X. A probability assignment mech-
anism is defined by 0 < P(T = 1|X,Y0,Y1) < 1, so that each
unit has a positive probability of receiving either treatment. For
technical convenience, the bounds are often assumed to be δ

and 1 − δ for a small number δ > 0.

Recording Data. There are at least two sources of missing-
ness. First, either Y0(ω) or Y1(ω), but not both, can actually be
observed, depending on the value of T(ω). Denote by Y = Y(ω)

the observed outcome (1 − T(ω))Y0(ω) + T(ω)Y1(ω). This in-
herent fact of observational life is called the fundamental prob-
lem of causal inference (Holland 1986). Second, some elements
in X(ω) and Y(ω) can be missing. For simplicity, we through-
out the article assume that the second source is absent.

Selecting Units. In a study, a sample {ω1, . . . ,ωn} is se-
lected from the population �. Basic sampling designs include
random sampling from the population �, random sampling
from the treated group {ω : T(ω) = 1} and the untreated group
{ω : T(ω) = 0}, and random sampling from the case group
{ω : Y(ω) = 1} and the referent group {ω : Y(ω) = 0} when
(Y0,Y1) are dichotomous. Here we focus on the first design and
assume that {ω1, . . . ,ωn} is an independent and identically dis-
tributed (iid) sample.

In the original work of Rubin (1978), the population � is fi-
nite, and selecting units appears to precede assigning treatments
and recording data. Our view presented earlier is slightly differ-
ent and tailored toward an infinite population.

3. NO–CONFOUNDING ESTIMATION

Let {ω1, . . . ,ωn} be an iid sample. The data (Xi,Yi,Ti) =
(X(ωi),Y(ωi),T(ωi)) are iid from the joint distribution of
(X,Y,T). Label the sample such that Ti = 1 for i = 1, . . . ,n1
and =0 for i = n1 +1, . . . ,n. Our task is to estimate µ0 = E(Y0)

and µ1 = E(Y1), whose difference gives the average causal ef-
fect.

Assume that the assignment mechanism is unconfounded:
T ⊥ (Y0,Y1)|X. The likelihood of {(Xi,Yi,Ti)} is

L1 × L2 =
n∏

i=1

[
(1 − π(Xi))

1−Tiπ(Xi)
Ti

]

×
n∏

i=1

[
G0({Xi,Yi})1−Ti G1({Xi,Yi})Ti

]
,

where π(X) is the propensity score P(T = 1|X), G0 is the
joint distribution of (X,Y0), and G1 is the joint distribution of
(X,Y1). The distribution G0 or G1 can be further factorized as
the marginal distribution P(X) times the conditional distribu-
tion P(Y0|X) or P(Y1|X), but such a factorization is avoided
here. The likelihood is a product of two factors, one factor, L1,
involving π only and the other factor, L2, involving (G0,G1)

only. By definition, G0 and G1 induce the same marginal dis-
tribution on the covariate space X . Equivalently, G0 and G1
satisfy

∫
h(x)dG0(x, y0) =

∫
h(x)dG1(x, y1) (1)

for each bounded function h on X .
At this stage, the model is saturated or nonparametric; there

is no additional restriction on either π or (G0,G1). Paramet-
ric submodels can be specified for the regression functions
E(Yt|X), the propensity score P(T = 1|X), or both. Consider
the outcome regression model (model R)

E(Yt|X) = �(α�
t g(X)),

where � is a link function, g = (1,g1, . . . ,gk)
� is a vec-

tor of known functions including the constant, and αt =
(αt0, αt1, . . . , αtk)

� is a vector of parameters (t = 0,1). The
model can be fit by maximum quasi-likelihood, and E(Yt) =
E[E(Yt|X)] can be estimated by

µ̂OR = 1

n

n∑

i=1

Ê(Yt|Xi).

Alternatively, consider the propensity score model (model S)

P(T = 1|X) = �(γ �f(X)),

where � is a link function, f = ( f1, . . . , fl)� is a vector of
known functions, and γ = (γ1, . . . , γl)

� is a vector of parame-
ters. The model can be fit by maximum likelihood, and E(Yt)

can be estimated by the inverse probability weighted (IPW) es-
timator

µ̂IPW = 1

n

n∑

i=1

1{Ti = t}
P̂(T = t|Xi)

Yi.

Write the fitted propensity score as π(X; γ̂ ). Finally, some es-
timators use submodels for both the propensity score and the
regression functions. We describe a number of such estimators
proposed by Robins, Rotnitzky, and others in related missing-
data problems. For simplicity, let the estimand be µ1. Robins,
Rotnitzky, and Zhao (1994) proposed the augmented IPW esti-
mator

µ̂AIPW,fix = µ̂IPW − 1

n

n∑

i=1

(
Ti

π(Xi; γ̂ )
− 1

)
�(α̂�

1 g(Xi)),

and Robins et al. (1995) further considered the estimator

µ̂AIPW,est = µ̂IPW − β̂�
1

1

n

n∑

i=1

(
Ti

π(Xi; γ̂ )
− 1

)
�(α̂�

1 g(Xi)),

where β̂1 is the regression coefficient of π−1(Xi; γ̂ )TiYi on
(π−1(Xi; γ̂ )Ti − 1)�(α̂�

1 g(Xi)) based on asymptotic variance
and covariance. Scharfstein, Rotnitzky, and Robins (1999, re-
joinder) suggested the estimator

µ̂OR,ext = 1

n

n∑

i=1

�

(
α̃�

1 g(Xi) + κ̃
1

π(Xi; γ̂ )

)
,

where (α̃1, κ̃) solves 0 = ∑n
i=1 Ti(g(Xi),π

−1(Xi; γ̂ ))� ×
(Yi − �(α�

1 g(Xi) + κπ−1(Xi; γ̂ ))) for the extended model
E(Y|T = 1,X) = �(α�

1 g(X) + κπ−1(X; γ̂ )). Rotnitzky and
Robins (1995) proposed the estimator

µ̂IPW,ext = 1

n

n∑

i=1

Ti

π(Xi; γ̃ , θ̃ )
Yi,
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where (γ̃ , θ̃ ) solves 0 = ∑n
i=1(f(Xi),π

−1(Xi; γ̂ )�(α̂�
1 ×

g(Xi)))
�(Ti − π(Xi;γ , θ)) for the extended model P(T = 1|

X) = �(γ �f(X) + θ π−1(X; γ̂ )�(α̂�
1 g(X))). Robins, Rot-

nitzky, and Bonetti (2001) and Robins (2002a) suggested the
estimator

µ̂IPW,lim = 1

n

n∑

i=1

Ti

π(Xi; γ̃ ∞, θ̃∞)
Yi,

where (γ̃ ∞, θ̃∞) is the limit of (γ̃ k, θ̃k) as k → ∞ and (γ̃ k, θ̃k)

solves a similar estimating equation for the model P(T = 1|
X) = �(γ �f(X) + θπ−1(X; γ̃ k−1, θ̃k−1)�(α̂�

1 g(X))) with
π(X; γ̃ 0, θ̃0) = π(X; γ̂ ) for k ≥ 1.

All existing propensity score methods are based on estimat-
ing equations. The estimator µ̂OR,ext appears to be likelihood-
based, but the extended model is not supposed to describe the
data-generating process or be used to evaluate the estimator (see
Robins, Rotnitzky, and van der Laan 2000 for a related discus-
sion). Robins and Ritov (1997) examined implications of the
likelihood principle in designed studies with missing data. Here
the likelihood is factorized in terms of π and (G0,G1), and the
estimands E(Y0) and E(Y1) are functions of (G0,G1) only. The
(strict) likelihood principle implies that inference should be the
same whatever the knowledge of π . Therefore, likelihood in-
ference can make use of the propensity score π only if some
information about the joint distributions (G0,G1) is ignored.
We develop a nonparametric likelihood method using propen-
sity scores by making explicit what information is ignored and
what is retained, and further suggest a closed-form regression
estimator that is at least as efficient and robust as existing esti-
mators in the literature.

3.1 Known Propensity Score

To motivate ideas, we treat the case where our knowledge
about the propensity score is exact and expressed as a func-
tion π∗, referred to as model S0. The case of parametric propen-
sity score is treated in the next section.

Assume that model S0 is correct: π∗ agrees with the underly-
ing propensity score π . For likelihood inference, we first want
to maximize

L2 =
n∏

i=1

[
G0({Xi,Yi})1−Ti G1({Xi,Yi})Ti

]

over distributions (G0,G1) with the same marginal on X . But if
all constraints (1) were included, then inference would not de-
pend on the propensity score. Robins and Ritov (1997) showed
that no such estimator can be uniformly consistent or attain an
algebraic rate of convergence if X has a continuous component.
We choose to retain finitely many constraints and ignore other
constraints on (G0,G1). Keep in mind that such constraints are
inherent and different from modeling assumptions. The pro-
posal is similar to the formulation for Monte Carlo integration
of Kong et al. (2003), except where using all information leads
to a perfect but computationally infeasible estimator.

Let h∗ = (π∗,1 − π∗,h∗
1, . . . ,h∗

m) be a vector of real-valued
functions including π∗ and 1−π∗ on X . We maximize L2 over
(G0,G1) subject to

∫
π∗(x)dG0 =

∫
π∗(x)dG1

and
∫

h∗
j (x)dG0 =

∫
h∗

j (x)dG1, j = 1, . . . ,m.

The constraint associated with π∗ is such that the marginal
probabilities of T = 1 and T = 0 add to 1, whereas other con-
straints are included for variance reduction. In addition, we re-
strict our attention to the G1’s supported on {(Xi,Yi): i = 1,

. . . ,n1} and G0’s supported on {(Xi,Yi): i = n1 + 1, . . . ,n}, for
technical reasons (see Tan 2004). Theorem 1 provides a formula
for the constrained maximum likelihood estimator (MLE). If
X is finite and h∗ spans all functions on X , then (Ĝ0, Ĝ1) re-
duces to the usual MLE and does not depend on the propensity
score; see Section 4.1.

Theorem 1. Assume that (1, . . . ,1), (π∗(X1), . . . , π
∗(Xn)),

(h∗
j (X1), . . . ,h∗

j (Xn)), j = 1, . . . ,m, are linearly independent,

and that the function �n : Rm+2 → R ∪ {−∞} achieves a maxi-
mum at λ̂,

�n(λ) = 1

n

n1∑

i=1

log(λ�h∗(Xi)) + 1

n

n∑

i=n1+1

log(1 − λ�h∗(Xi)),

where log of 0 or a negative number is −∞. Then the con-
strained MLE is

Ĝ1({Xi,Yi}) = n−1

λ̂�h∗(Xi)
, i = 1, . . . ,n1,

and

Ĝ0({Xi,Yi}) = n−1

1 − λ̂�h∗(Xi)
, i = n1 + 1, . . . ,n.

The distributions (Ĝ0, Ĝ1) can be visualized as weighted
histograms; see Section 5. By construction,

∫
h∗

j (x)dĜ0 and∫
h∗

j (x)dĜ1 are equal for j = 1, . . . ,m. The expectation E(Yt)

can be estimated by

µ̂t =
∫

yt dĜt.

Similarly, expectations of functions of (X,Y0) and (X,Y1) can
be estimated. The estimator µ̂t has the IPW form like µ̂IPW,ext,
but using propensity scores estimated from the linear extended
model P(T = 1|X) = λ�h∗(X). The model is fitted by maxi-
mum likelihood rather than least squares, and the fitted values
lie between 0 and 1 asymptotically.

There is a closed-form estimator related to the likelihood es-
timator. Let

�∗
1 = T

π∗(X)
− 1, �∗

0 = 1 − T

1 − π∗(X)
− 1,

ξ∗
1 = h∗(X)

1 − π∗(X)
�∗

1, ξ∗
0(= −ξ∗

1) = h∗(X)

π∗(X)
�∗

0,

ζ ∗
1 = h∗(X)

1 − π∗(X)
(1 + �∗

1), ζ ∗
0 = h∗(X)

π∗(X)
(1 + �∗

0),

η∗
1 = Y(1 + �∗

1), and η∗
0 = Y(1 + �∗

0).

Consider the regression estimator

µ̃t = Ẽ(η∗
t ) − β̃�

t Ẽ(ξ∗
t ),
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where β̃ t = B̃−1
t C̃t, B̃t = Ẽ(ξ∗

t ζ
∗�
t ), C̃t = Ẽ(ξ∗

t η
∗
t ), and Ẽ(·)

denotes sample average. Theorem 2 says that the regression es-
timator is a first-order approximation to the likelihood estimator
under model S0. This result is similar to those established for
Monte Carlo integration by Tan (2004). Throughout, “�” de-
notes a difference of order op(n−1/2).

Theorem 2. Assume that π∗ is strictly between 0 and 1 (i.e.,
π∗ ∈ [δ,1 − δ] for some δ > 0), that h∗

1, . . . ,h∗
m are bounded

(i.e., |h∗
j | ≤ � for some � ≥ 1), and that 1,π∗,h∗

1, . . . ,h∗
m are

linearly independent on X . Under model S0 (i.e., π∗ = π ), we
have

µ̂t � µ̃t � Ẽ(η∗
t ) − β tẼ(ξ∗

t ),

where β t = B−1
t Ct, Bt = E(ξ∗

t ζ
∗�
t ), and Ct = E(ξ∗

t η
∗
t ). Here

B1 = B0 is the variance of ξ∗
1 = −ξ∗

0, and C1 or C0 is the co-
variance of ξ∗

1 and η∗
1 or ξ∗

0 and η∗
0 .

From an estimating equation standpoint, µ̃t is an instance of
the method of control variates using estimated optimal coeffi-
cients for variance reduction (see Hammersley and Handscomb
1964). The method exploits the fact that E(η∗

t ) = µt and
E(ξ∗

t ) = 0 under model S0 and defines a class of estimators

Ẽ(η∗
t ) − b�

t Ẽ(ξ∗
t ), (2)

where bt is an arbitrary vector. The optimal choice of bt in mini-
mizing the variance of (2) is given by β t. A consistent estimator
can be substituted for the unknown β t, and the resulting estima-
tor of µt achieves the same minimum variance asymptotically.
A classical estimator of β t is Ẽ(ξ∗

t ξ
∗�
t )−1Ẽ(ξ∗

t η
∗
t ), leading to

the estimator µ̂AIPW,est. The particular estimator β̃ t is proposed
here, because the corresponding estimator µ̃t can remain valid
even when the propensity score model is wrong; see Theorem 3.

Given the functions h∗, the estimators µ̂t and µ̃t achieve
the lowest asymptotic variance possible by using the con-
trol variates ξ∗

t . A remaining question is how to choose h∗.
Robins and Rotnitzky (1995) and Hahn (1998) showed that
η∗

t − µt − E(Yt|X)�∗
t is an efficient influence function (whose

variance gives the semiparametric variance bound) under model
S0. By this result, it is desirable to choose h∗ such that (condi-
tion R)

E(Y1|X = x) is a linear combination of (1 − π∗)−1h∗

and

E(Y0|X = x) is a linear combination of π∗−1h∗.

Then β t gives the combination coefficient of E(Yt|X) and β�
t ξ∗

t
gives E(Yt|X)�∗

t because

β t = E−1(ξ∗
t ζ

∗
t )E[ξ∗

t Yt(1 + ρ∗
t )]

= E−1(ξ∗
t ζ

∗
t )E

[
ξ∗

t E(Yt|X)(1 + ρ∗
t )

]
.

It follows that if condition R holds, then µ̂t and µ̃t achieve
the semiparametric variance bound under model S0. An out-
come regression model can be used as a guidance to choose
the functions h∗. In fact, condition R is satisfied asymptotically
for h∗ = (π∗,1−π∗,π∗�(α̂�

0 g), (1−π∗)�(α̂�
1 g)) if model R

holds.
Suppose now that our knowledge about the propensity score

can be wrong. Theorem 3 shows the asymptotic behavior of µ̃t

whether or not model S0 is correct. By the definition of β t,
the third term has mean 0 in the expansion. If model S0 is
correct, then µ̂t and µ̃t are consistent and the third term van-
ishes because E(η∗

t − β�
t ξ∗

t ) = µt and E(ξ∗
t ) = 0. Otherwise,

µ̂t and µ̃t become inconsistent in general. However, µ̃t remains
consistent if condition R holds. The reason for this is twofold:
β t always gives the combination coefficient of E(Yt|X) under
condition R, and the expectation of η∗

t − E(Yt|X)�∗
t remains µt

even if model S0 is wrong. This robustness can be seen as bias
reduction: the asymptotic bias of µ̃t is 0 or close to 0 if condi-
tion R holds or approximately so.

Theorem 3. Assume the regularity conditions in Theorem 2.
Then

µ̃t � Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ) − E�(ξ∗

t )B
−1
t Ẽ[ξ∗

t (η
∗
t − β�

t ζ ∗
t )],

where β t and Bt are defined as in Theorem 2.

It is interesting to compare the new estimators and previously
proposed estimators using models S0 and R. For simplicity, let
the estimand be µ1 and take h∗ = (1 − π∗, (1 − π∗)�(α̂�

1 g)).
Table 1 presents a comparison in terms of three properties: opti-
mal in using control variates (CV), locally efficient, and doubly
robust.

The estimators µ̂1 and µ̂IPW,ext are similar in terms of both
construction (through an extended propensity score model) and
properties (being locally efficient and optimal in using control
variates but not doubly robust). The estimators µ̃1 and µ̂IPW,lim

are similar, deliberately constructed to be doubly robust. How-
ever, µ̃1 admits a closed-form expression. For µ̂IPW,lim, the it-
eration θ̃k−1 �→ θ̃k is so implicitly defined that there is even no
closed-form estimating equation for θ̃∞, in contrast to the usual
case where an estimator is not in closed form but can be defined
by a closed-form estimating equation.

The estimators µ̃1, µ̂AIPW,fix, and µ̂AIPW,est belong to the
same class (2) with different choices of b1. In particular,
µ̃1 and µ̂AIPW,fix are equally efficient if models S0 and R are
both correct and are robust to misspecification of model S0 if
model R holds. However, µ̃1 is more efficient if model R is
wrong but model S0 is correct, because it achieves the lowest
asymptotic variance among the class (2). A lesson is that sim-
ply substituting estimates from a working model for unknown
quantities can be inefficient if the working model is wrong, even
though there is no efficiency loss if the working model is cor-
rect.

The choice h∗ = (π∗, 1−π∗,π∗�(α̂�
0 g), (1−π∗)�(α̂�

1 g))

is more suitable for simultaneous estimation of µ0 and µ1 than
taking h∗ = (π∗,π∗�(α̂�

0 g)) and (1 − π∗, (1 − π∗)�(α̂�
1 g))

separately in the two treatment arms. First, it brings more con-
trol variates and leads to better efficiency and robustness as-
ymptotically. Second, it allows the same set of control variates
for estimation of µ0 and µ1 so that the difference also achieves
the lowest asymptotic variance possible by using these control
variates.

Table 1. Theoretical Comparison of Estimators

AIPW AIPW OR IPW IPW
fix est ext ext lim REG LIK

Optimal CV × � × � � � �
Locally efficient � � � � � � �
Doubly robust � × � × � � ×
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3.2 Parametric Propensity Score

We turn to the case where our knowledge about the propen-
sity score is parametric and expressed as π(·;γ ) or model S.
Hirano, Imbens, and Ridder (2003) considered nonparametric
estimation of the propensity score and showed that the IPW es-
timator achieves the semiparametric variance bound under suit-
able smoothing conditions.

White (1982) generalized the theory of maximum likelihood
to possibly misspecified models. Let γ ∗ be the value of γ

minimizing the Kullback–Leibler distance between π(·;γ ) and
the underlying propensity score π or, equivalently, maximiz-
ing E(κ) with

κ(γ ) = T logπ(X;γ ) + (1 − T) log(1 − π(X;γ )).

Geometrically, π∗ = π(·;γ ∗) is the closest element in model S
to the truth π . Model S is correct if and only if π∗ and π agree.
The score function is

s = ∂κ

∂γ
= T − π(X;γ )

π(X;γ )(1 − π(X;γ ))

∂π(X;γ )

∂γ
.

Under standard regularity conditions, the MLE γ̂ converges
to γ ∗ with probability 1 and has the expansion

γ̂ − γ ∗ � V−1Ẽ(s∗),

where s∗ = s(·;γ ∗) satisfies E(s∗) = 0 and V = −E(∂2κ/

∂γ 2)|γ=γ ∗ is nonsingular.
The likelihood is factorized in terms of γ and (G0,G1). We

consider a maximum likelihood procedure in two steps. First,
maximize L1(γ ), that is, fit the propensity score model S. Let
h(1) = [π(·;γ ),1 − π(·;γ ),h1(·;γ ), . . . ,hm(·;γ )] be a vec-
tor of real-valued functions including π(·;γ ) and 1 − π(·;γ )

on X and h(2) = ∂π(·;γ )/∂γ , and evaluate ĥ(1) = h(1)(·; γ̂ )

and ĥ(2) = h(2)(·; γ̂ ). Second, maximize L2(G0,G1) subject to
∫

π̂(x)dG0 =
∫

π̂(x)dG1,

∫
ĥj(x)dG0 =

∫
ĥj(x)dG1, j = 1, . . . ,m,

and
∫

∂π̂

∂γj
(x)dG0 =

∫
∂π̂

∂γj
(x)dG1, j = 1, . . . , l.

The likelihood estimator µ̂t is defined as before,

µ̂t =
∫

yt dĜt.

To introduce the regression estimator, let h = (h(1),h(2)), and

�1 = T

π(X;γ )
− 1, �0 = 1 − T

1 − π(X;γ )
− 1,

ξ1 = h(X;γ )

1 − π(X;γ )
�1, ξ0(= −ξ1) = h(X;γ )

π(X;γ )
�0,

ζ 1 = h(X;γ )

1 − π(X;γ )
(1 + �1), ζ 0 = h(X;γ )

π(X;γ )
(1 + �0),

η1 = Y(1 + �1), and η0 = Y(1 + �0).

Define the hat variables �̂t, ξ̂ t, ζ̂ t, and η̂t by evaluation at γ̂

and the limit variables �∗
t , ξ∗

t , ζ ∗
t , and η∗

t by evaluation at γ ∗.
Consider the regression estimator

µ̃t = Ẽ(η̂t) − β̃�
t Ẽ(ξ̂ t),

where β̃ t = B̃−1
t C̃t, B̃t = Ẽ(ξ̂ tζ̂

�
t ), and C̃t = Ẽ(ξ̂ tη̂t). As a gen-

eralization of Theorem 2, Theorem 4 says that the regression
estimator is a first-order approximation to the likelihood esti-
mator under model S.

Theorem 4. In addition to the regularity conditions in Theo-
rem 2, assume that the results of White (1982) hold and that
∂π(·;γ )/∂γ , ∂hj(·;γ )/∂γ , j = 1, . . . ,m, and ∂2π(·;γ )/∂γ 2

are uniformly bounded in a neighborhood of γ ∗. Under model S
(i.e., π∗ = π ), we have

µ̂t � µ̃t � Ẽ(η̂t) − β�
t Ẽ(ξ̂ t)

� Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ),

where β t = B−1
t Ct, Bt = E(ξ∗

t ζ
∗�
t ), and Ct = E(ξ∗

t η
∗
t ).

To clarify the two expansions, partition ĥ into (ĥ(1), ĥ(2)) and
correspondingly partition ξ̂ t into (ξ̂

(1)
t , ξ̂

(2)
t ), ζ̂ t into (ζ̂

(1)
t , ζ̂

(2)
t ),

and β̃ t into (β̃
(1)
t , β̃

(2)
t ). It follows that ξ̂

(2)
1 = −ξ̂

(2)
0 = ŝ,

and Ẽ(ξ̂
(2)
t ) = Ẽ(±ŝ) = 0. The estimator µ̃t becomes Ẽ(η̂t) −

β̃
(1)�
t Ẽ(ξ̂

(1)
t ), and the first expansion in Theorem 4 reduces to

Ẽ(η̂t) − β
(1)�
t Ẽ

(
ξ̂

(1)
t

)
.

By Taylor expansions, Ẽ(η̂t) and Ẽ(ξ̂
(1)
t ) are asymptotically

equivalent to Ẽ(�⊥[η∗
t |s∗]) and Ẽ(�⊥[ξ∗(1)

t |s∗]), where
�⊥[·|·] denotes the residual in the projection of the first vari-
able on the second; see the Appendix for details. Moreover,
the coefficient β

(1)
t of ξ

∗(1)
t in the full regression of η∗

t on
ξ∗

t = (ξ
∗(1)
t ,±s∗) equals the coefficient in the regression of the

residual �⊥[η∗
t |s∗] (from the regression of η∗

t on s∗) on the

residual �⊥[ξ∗(1)
t |s∗] (from the regression of ξ

∗(1)
t on s∗) by

the theory of linear models (Draper and Smith 1981). The sec-
ond expansion in Theorem 4 follows because the residual from
the full regression also equals that from the regression of the
residuals.

Theorem 4 implies two optimality properties of µ̂t and µ̃t.
First, µ̂t and µ̃t achieve the lowest asymptotic variance among
the class

Ẽ(η̂t) − b(1)�
t Ẽ

(
ξ̂

(1)
t

)
, (3)

where b(1)
t is an arbitrary vector, because β

(1)
t equals the as-

ymptotic covariance of η̂t and ξ̂
(1)
t divided by the asymptotic

variance of ξ̂
(1)
t . That is, µ̂t and µ̃t make optimal use of the con-

trol variates ξ̂
(1)
t derived from the functions ĥ(1) for variance re-

duction. Second, µ̂t and µ̃t achieve the semiparametric variance
bound under model S if condition R holds [i.e., E(Y1|X = x) is a
linear combination of (1−π∗)−1h∗ and E(Y0|X = x) is a linear
combination of π∗−1h∗], because β�

t ξ∗
t then gives E(Yt|X)�∗

t
and η∗

t − µt − E(Yt|X)�∗
t is an efficient influence function un-

der model S. The effect of variance reduction is overall optimal
if condition R holds approximately.

Suppose now that our knowledge about the propensity score
can be wrong. The estimators µ̂t and µ̃t become inconsistent in
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general; however, µ̃t remains consistent if condition R holds.
The reason is twofold: β�

t ξ∗
t always gives E(Yt|X)�∗

t under
condition R, and the expectation of η∗

t − E(Yt|X)�∗
t remains µt

even if model S is wrong. The asymptotic bias of µ̃t can be
substantially reduced as compared with µ̂IPW = Ẽ(η̂t) if condi-
tion R holds approximately. As a generalization of Theorem 3,
Theorem 5 shows the asymptotic behavior of µ̃t whether or not
model S is correct. The final term arises in the expansion due to
the variation of γ̂ in the hat variables ξ̂ t, ζ̂ t, and η̂t.

Theorem 5. Assume the regularity conditions in Theorem 4.
Then

µ̃REG � Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ) − E�(ξ∗

t )B
−1
t Ẽ[ξ∗

t (η
∗
t − β�

t ζ ∗
t )]

+ {
E(∂η∗

t /∂γ ) − β�
t E(∂ξ∗

t /∂γ )

− E�(ξ∗
t )B

−1
t E

[
∂(ξ∗

t (η
∗
t − β�

t ζ ∗
t ))/∂γ

]}

× V−1Ẽ(s∗),

where β t and Bt are defined as in Theorem 4.

The estimators µ̂t and µ̃t are systematic generalizations of
those in Section 3.1. Here µ̂t is defined by maximum likelihood
subject to an extra set of constraints associated with ĥ(2), and
µ̃t is defined by regressing on an extra set of control variates ±ŝ.
These pieces accommodate the variation of γ̂ and are necessary
for asymptotic optimality. However, there can be a trade-off in
finite samples. The variation of β̃ t is negligible in large samples
under model S but can become substantial in small to medium
samples due to the extra regressors ŝ. Given this consideration,
we can drop the extra constraints in µ̂t and the extra control
variates in µ̃t. Specifically, define the likelihood estimator

µ̂
(m)
t =

∫
yt dĜ(m)

t ,

where L2(G0,G1) is maximized subject to the constraints asso-
ciated with ĥ(1) and define the regression estimator

µ̃
(m)
t = Ẽ(η̂t) − β̃

(m)�
t Ẽ

(
ξ̂

(1)
t

)
,

where β̃
(m)
t = (B̃(m)

t )−1C̃(m)
t , B̃(m)

t = Ẽ(ξ̂
(1)
t ζ̂

(1)�
t ), and C̃(m)

t =
Ẽ(ξ̂

(1)
t η̂t). The two estimators are simple generalizations of µ̂t

and µ̃t in Section 3.1, because π̂ and ĥ(1) are substituted for π∗
and h∗ everywhere. Define condition R(m) as the case where
E(Y1|X = x) is a linear combination of (1 − π∗)−1h∗(1) and
E(Y0|X = x) is a linear combination of π∗−1h∗(1). Theorem 6
summarizes the asymptotic behaviors of µ̂

(m)
t and µ̃

(m)
t .

Theorem 6. (a) In addition to the regularity conditions in
Theorem 2, assume that White’s (1982) results hold, and
that ∂π(·;γ )/∂γ and ∂hj(·;γ )/∂γ , j = 1, . . . ,m, are uni-
formly bounded in a neighborhood of γ ∗. Under model S (i.e.,
π∗ = π ), we have

µ̂
(m)
t � µ̃

(m)
t � Ẽ(η̂t) − β

(m)�
t Ẽ

(
ξ̂

(1)
t

)

� Ẽ(�⊥[η∗
t |s∗]) − β

(m)�
t Ẽ(�⊥[ξ∗

t |s∗]),
where β

(m)
t = B(m)−1

t C(m)
t , B(m)

t = E(ξ
∗(1)
t ζ

∗(1)�
t ), and C(m)

t =
E(ξ

∗(1)
t η∗

t ).

(b) Assume the regularity conditions in part (a). Then µ̃
(m)
t

has the expansion as in Theorem 5 with ξ
∗(1)
t , ζ

∗(1)
t , β

(m)
t ,

and B(m)
t in place of ξ∗

t , ζ ∗
t , β t, and Bt.

The estimators µ̂t and µ̃t are fully efficient among the
class (3) in large samples, whereas µ̂

(m)
t and µ̃

(m)
t are ex-

pected to perform well in small to medium samples. For ĥ(1) =
(π̂ ,1 − π̂ , π̂�(α̂�

0 g), (1 − π̂)�(α̂�
1 g)), conditions R and R(m)

are satisfied asymptotically if model R holds. The four estima-
tors are locally efficient (i.e., achieve the semiparametric vari-
ance bound under model S if models S and R are both correct).
The regression estimators are also doubly robust (i.e., remain
consistent and asymptotically normal if either model S or R is
correct). From here on, we write Ĝt, µ̂t, and µ̃t for the modified
estimators as well as the original estimators if no distinction is
made between the two kinds of estimators.

Given the theoretical results, we discuss two issues for data
analysis. We illustrate our method in detail in Section 5. First,
propensity score models and outcome regression models play
different roles, even though double robustness refers equally to
the two models. The estimators are derived under the assump-
tion that model S is correct, and then examined in the situation
where model R is also correct or model S is misspecified but
model R is correct. Although both models must be considered
carefully, our strategy for data analysis is to build and check
propensity score models as a starting point, and incorporate out-
come regression models for variance and bias reduction.

Second, propensity score models can be checked with the
following idea. Pick up a collection of test functions ĥj’s on X
and calculate

Ẽ

[
ĥj(X)

(
T

π̂(X)
− 1 − T

1 − π̂ (X)

)]
. (4)

The statistic gives the average difference in ĥj(X) between
treated and untreated groups after propensity score weighting.
A test function in ĥ(1) corresponds to a component of Ẽ(ξ̂

(1)
t ).

If model S is correct, then the sample averages relative to stan-
dard errors (or z-ratios) should be statistically nonsignificant
from 0 (or standard normal). Moreover, the regression estima-
tor µ̃t and the IPW estimator Ẽ(η̂t) are expected to yield similar
values relative to standard errors, indicating a zero bias reduc-
tion. Examination of z-ratios against the standard normal can
reveal possible misspecification of model S.

The statistic (4) can be written as Ẽ[φ(X)(T − π̂(X))], where
φ(X) = ĥj(X)/[π̂ (X)(1 − π̂(X))]. It gives the covariance be-
tween a function of the covariates and the residual, thereby
representing one piece of information on the patterns of the
residual against the covariates. We plan to investigate this ap-
proach to model checking for general regression models in fu-
ture work. Robins and Rotnitzky (2001) discussed goodness-
of-fit tests by comparing µ̂OR based on model R, µ̂IPW based
on model S, and a doubly robust estimator, say µ̂AIPW,fix, based
on both models. The difference between µ̂IPW and µ̂IPW,fix is
Ẽ[φ(X)(T − π̂ (X))] with φ(X) = π̂−1(X)Ê(Y|T = 1,X). The
difference between µ̂OR and µ̂IPW,fix is Ẽ[Tφ(X)(Y − Ê(Y|T =
1,X))] with φ(X) = π̂−1(X), a generalization of the statistic
(4) to outcome regression models. Therefore, these goodness-
of-fit tests are well connected.
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3.3 Simulation Study

Assume that the marginal probability of T = 1 is 1/2, and
that X has a truncated normal distribution in each treatment
group: X|T = 1 ∼ N(d, σ 2

1 ) and X|T = 0 ∼ N(−d, σ 2
0 ) trun-

cated on the interval (−a,a). Then the marginal distribution
of X is a mixture of two truncated normal distributions, and the
propensity score is

logit P(T = 1|X)

= − log

[
�

(
a − d

σ1

)
− �

(−a − d

σ1

)]

− log

[
�

(
a + d

σ0

)
− �

(−a + d

σ0

)]

− log

(
σ1

σ0

)
+ d2

2

(
− 1

σ 2
1

+ 1

σ 2
0

)

+ d

(
1

σ 2
1

+ 1

σ 2
0

)
X + 1

2

(
− 1

σ 2
1

+ 1

σ 2
0

)
X2.

Assume that, conditional on X, each response Yt has a normal
distribution with mean E(Yt|X) and variance τ 2 (t = 0,1). Note
that if a = ∞ and σ 2

1 ≤ σ 2
0 /2, the variance of T/π(X) is infinite.

For simplicity, a = 5/2 is fixed throughout.
We consider factorial combinations of the following condi-

tions: (a) d = 1/4 or 1/2, (b) (σ 2
0 , σ 2

1 ) = (1,1), (4/3,2/3),
or (2/3,4/3), (c) E(Y0|X) = 1 + X, eX , 1 + X, or 1 + X, and
E(Y1|X) = 3 + X, 2 + eX , 3 + 2X, or 2 + eX , and (d) τ 2 = 1/2.
Values of d between 1/8 and 1/2 and of σ 2

1 /σ 2
0 between 1/2

and 2 are typical of those that might occur in practice (Rubin
1973). Two possible propensity score models are

(S1) logitπ(X;γ ) = γ1 + γ2X

and

(S2) logitπ(X;γ ) = γ1 + γ2X + γ3X2.

Model S2 is correct under all of the specifications of (σ 2
0 , σ 2

1 ),
whereas model S1 is correct under only the first specification:
σ 2

0 = σ 2
1 . The first two specifications in (c) give parallel re-

sponse curves, whereas the other two give nonparallel response
curves. A response model is

(R) E(Y0|X) = α00 + α01X and E(Y1|X) = α10 + α11X.

This model is correct under the first and third specifications of
E(Yt|X), but not under the other two. We compare 10 estima-
tors, including SUB, Rosenbaum and Rubin’s (1984) subclas-
sification estimator with 5 subclasses; IPW (lim), the estimator
µ̂IPW,lim with the number of iterations fixed at 50; REG, the re-
gression estimator µ̃

(m)
t ; and LIK, the likelihood estimator µ̂

(m)
t

with ĥ(1) = (π̂,1 − π̂ , π̂X, (1 − π̂)X).
Similar comparisons are obtained for different values of d

and (σ 2
0 , σ 2

1 ). Table 2 summarizes estimates of µ1 − µ0 for
d = 1/2 and (σ 2

0 , σ 2
1 ) = (4/3,2/3). The OR estimator performs

well if the response model used is correct but has serious bias
otherwise. The IPW estimator has negligible bias if the propen-
sity score model used is correct but has serious bias otherwise.
The SUB estimator has considerable bias even if the propensity
score model used is correct, indicating that 5 subclasses are not
sufficient here.

Table 2. Numerical Comparison of Estimators

AIPW AIPW OR IPW IPW
OR SUB IPW fix est ext ext lim REG LIK

Quadratic propensity score model
L .00045 .086 −.0036 .00023 −.00058 −.0029 −.011 −.0080 −.000030 .00076
I .0500 .0612 .0776 .0607 .0578 .152 .0642 .0712 .0627 .0613
NP .0752 .0541 .0530

E −.38 .054 −.0098 −.024 −.064 .89 −.035 −.025† −.021 −.020
X .113 .095 .129 .217 .111 1.50 .0969 .101† .0755 .0779
PP .124 .0650 .0622

L −.00031 .15 .0098 −.00053 .0012 −.0037 .023 .024 −.00079 .0084
I .0662 .0848 .124 .0742 .0703 .158 .0820 .0931 .0761 .0758
NN .113 .0708 .0706

E −.39 .047 −.013 −.027 −.067 .88 −.039 −.033† −.022 −.012
X .0813 .0793 .144 .230 .127 1.50 .108 .114† .0818 .0773
PN .135 .0724 .0710

Linear propensity score model
L .00045 .080 −.23 .00031 .0087 −.00022 −.037 −.15 .000030 −.0019
I .0500 .0602 .105 .0521 .0513 .0620 .0714 .119 .0611 .0633
NP .108 .0559 .0527

E −.38 .022 −.74 −.58 −.37 .29 −.051 −.44 .042 −.0056
X .113 .106 .306 .207 .114 .230 .527 .413 .0664 .0767
PP .305 .0615 .0582

L −.00031 .14 −.11 −.00045 .014 −.00098 −.058 −.078 −.00073 .0029
I .0662 .0827 .102 .0678 .0664 .0754 .303 .207 .0748 .0784
NN .106 .0721 .0760

E −.39 .034 −.35 −.25 −.23 .29 −.035 −.23 −.0011 −.0084
X .0813 .0786 .126 .0900 .0865 .236 .531 .271 .0753 .0778
PN .130 .0725 .0709

NOTE: LINP, EXPP, LINN, and EXPN correspond to the four specifications of E(Yt |X ) in the text. The results are based on 5,000 Monte Carlo samples each of size 500. Each cell gives the bias
(upper) and the standard deviation (middle) of the point estimates, and

√
mean of the variance estimates (lower). Each cell of IPW (lim) labeled with † excludes two Monte Carlo samples in which

the iteration diverges grossly.



Tan: Causal Inference Using Propensity Scores 1627

The REG and AIPW (fix) estimators have small biases if
either the propensity score or the response model is correct.
If the propensity model is correct, then both estimators have
similar variances when the response model is correct, but the
REG estimator has variance reduced by a factor of 1–8 when
the response model is wrong. The AIPW (est) and IPW (ext)
estimators have small variances if the propensity score model
is correct but have considerable biases otherwise even if the re-
sponse model is correct. The OR (ext) and IPW (lim) estimators
have overall poor performances.

The LIK estimator has similar mean squared error as the
REG estimator if the propensity score model is correct. Oth-
erwise, the LIK estimator appears to have small mean squared
error whether or not the response model is correct, even though
it may not be consistent in theory. The REG and LIK estimators
have overall the smallest mean squared errors. The square root
of the mean of variance estimates agrees reasonably well with
the corresponding Monte Carlo standard deviation for the two
estimators.

4. SENSITIVITY ANALYSIS

Assume that the assignment mechanism can be confounded
given measured covariates T �⊥ (Y0,Y1)|X. The likelihood of
{(Xi,Yi,Ti)} is

L1 × L2 =
n∏

i=1

[
(1 − π(Xi))

1−Tiπ(Xi)
Ti

]

×
n∏

i=1

[
H0({Xi,Yi})1−Ti H1({Xi,Yi})Ti

]
,

where H0 is the composite distribution P(Y0|T = 0,X)P(X)

and H1 is the composite distribution P(Y1|T = 1,X)P(X) with
the same marginal distribution on X . The likelihood shares a
similar structure as that in Section 3 with (H0,H1) in place of
(G0,G1). The propensity score π(X) = P(T = 1|X) states how
treatment status T depends on covariates X regardless of the
no-confounding assumption. A propensity score model can be
fit to the data {(Xi,Ti)} as usual. On the other hand, (H0,H1)

are different from (G0,G1), the joint distributions of (X,Y0)

and (X,Y1), except under no confounding. An outcome re-
gression model about E(Yt|X) is not identifiable from the data
{(Xi,Yi,Ti)}; nevertheless, a model about E(Yt|T = t,X) can
be identified from the data. Consider the outcome regression
model (model Z)

E(Yt|T = t,X) = �(α�
t g(X)),

where E(Yt|T = t,X) = E(Y|T = t,X) is the regression func-
tion of observed outcome Y on covariates X for subjects with
treatment t. Models Z and R agree with each other under no
confounding, but not in general.

The estimation method in Section 3 can be extended such
that (H0,H1) plays the role of (G0,G1). The estimators Ĝt,
µ̂t, and µ̃t are defined exactly as before. Theorem 7 summa-
rizes asymptotic results (see Robins 1999, sec. 2.9, for related
results). If model S is correct, then (Ĝ0, Ĝ1) is a consistent
estimator of (H0,H1), and µ̂t is a consistent estimator of
E[E(Yt|T = t,X)], which is the expectation of Yt given T = t

and X and averaged over the distribution of X. The regres-
sion estimator µ̃t is a first-order approximation to the likeli-
hood estimator µ̂t if model S is correct, and remains consistent
for E[E(Yt|T = t,X)] if model Z is correct and ĥ(1) includes
(π̂ ,1 − π̂ , π̂�(α�

0 g), (1 − π̂ )�(α�
1 g)). In retrospect, these re-

sults clarify what is estimated [(H0,H1)] and what is assumed
[the equality of (H0,H1) to (G0,G1)] in no-confounding infer-
ence.

Theorem 7. (a) Assume the regularity conditions in Theorem
4 or 6(a). If model S is correct, then µ̂t and µ̃t or µ̂

(m)
t and µ̃

(m)
t

are consistent for E[E(Yt|T = t,X)] and have the same expan-
sions as in Theorem 4 or 6(a).

(b) Assume the regularity conditions in Theorem 5 or 6(b).
Then µ̃t or µ̃

(m)
t has the expansion as in Theorem 5 or 6(b).

The distributions P(Y0|T = 0,X) and P(Y1|T = 1,X) are
identifiable from observed data, whereas the distributions
P(Y0|X) and P(Y1|X) are not. However, there is a mixture struc-
ture for these distributions,

P(Y0|X) = (1 − π(X))P(Y0|T = 0,X) + π(X)P(Y0|T = 1,X)

(5)

and

P(Y1|X) = (1 − π(X))P(Y1|T = 0,X) + π(X)P(Y1|T = 1,X).

(6)

The components P(Y0|T = 1,X) and P(Y1|T = 0,X) are not
identifiable because Y0 (or Y1) cannot be observed on subjects
with T = 1 (or T = 0). The gaps between P(Yt|T = 1 − t,X)

and P(Yt|T = t,X) indicate unmeasured confounding (i.e., sys-
tematic differences between treated and untreated groups in
their outcomes that would be observed even if both groups re-
ceived the same treatment after controlling for measured covari-
ates). In Section 4.2 we propose a sensitivity analysis method
by postulating a relationship between the unidentifiable dis-
tribution P(Yt|T = 1 − t,X) and the identifiable distribution
P(Yt|T = t,X). Next, the distributional equations (5) and (6)
imply a corresponding structure for the expectations,

E(Y0|X) = (1 − π(X))E(Y0|T = 0,X) + π(X)E(Y0|T = 1,X)

(7)

and

E(Y1|X) = (1 − π(X))E(Y1|T = 0,X) + π(X)E(Y1|T = 1,X).

(8)

It follows that the biases E(Y0|T = 0,X) − E(Y0|X) and
E(Y1|T = 1,X)−E(Y1|X) are given by π(X)[E(Y0|T = 0,X)−
E(Y0|T = 1,X)] and (1 − π(X))[E(Y1|T = 1,X) − E(Y1|
T = 0,X)]. This result can be used for sensitivity analysis
by postulating a relationship between the unidentifiable ex-
pectation E(Yt|T = 1 − t,X) and the identifiable expectation
E(Yt|T = t,X) (see Brumback et al. 2004; Robins 1999). We
discuss this approach briefly in Section 4.3.

4.1 Illustration

We illustrate our ideas using a simple hypothetical example.
Suppose that an iid sample is selected from a male population
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Table 3. Binary Covariate

T = 1 T = 0

X = 1 (52, 28) (11, 9)
X = 0 (30, 10) (37, 23)

NOTE: Each cell gives the numbers of Y = 1 (left)
and Y = 0 (right).

of age 50–70, and their treatment status T (drinking alcohol or
not), binary outcome Y (having headaches or not), and binary
covariate X (high or low income) are recorded; see Table 3. For
simplicity, imagine that the numbers are in thousands, so that
we can ignore sampling errors. The task is to study the effect of
drinking alcohol on experiencing headaches in this population.

The raw probability of experiencing headaches is P(Y1 = 1|
T = 1) = 68.3% among drinkers and P(Y0 = 0|T = 0) = 60.0%
among nondrinkers. Comparing the two probabilities would
give the average causal effect if people chose to drink at ran-
dom. However, two out of three drinkers (80/120) and one out
of four nondrinkers (20/80) earn a high income. It is necessary
to adjust for the income level to estimate the effect of drinking.

Because the covariate X is binary, two methods can be used
with equivalent results. The first method estimates the regres-
sion means given X and T , E(Y1|X = 1,T = 1) = 65.0%,
E(Y1|X = 0,T = 1) = 75.0%, E(Y0|X = 1,T = 0) = 55.0%,
and E(Y1|X = 0,T = 0) = 61.7%, and then calculates the
sample averages over the distribution of X, E[E(Y1|X,T =
1)] = (65.0% + 75.0%)/2 = 70.0% and E[E(Y0|X,T = 0)] =
(55.0% + 61.7%)/2 = 58.3%. The second method, which is
generalized in this article, weights each drinker by w1(1) if
X = 1 or w1(0) if X = 0 such that the weighted probabilities
of X = 1 and X = 0 among drinkers match the probabilities
of X = 1 and X = 0 in the whole sample [80w1(1) = 1/2 and
40w1(0) = 1/2], and then estimates E[E(Y1|X,T = 1)] by the
weighted probability of Y1 = 1 [52w1(1) + 30w1(0) = 70.0%].
Similarly, it weights each nondrinker by w0(1) if X = 1 or
w0(0) if X = 0 such that 20w0(1) = 1/2 and 60w0(0) = 1/2,
and then estimates E[E(Y0|X,T = 0)] by the weighted proba-
bility of Y0 = 1 [11w0(1) + 37w0(0) = 58.3%]. It is easy to see
that w1(X) = 1/[200π(X)] and w0(X) = 1/[200(1 − π(X))],
where the propensity score π(X) = P(T = 1|X) is .8 for X = 1
and .4 for X = 0. If both high-income and low-income per-
sons chose to drink at random (i.e., there were no confounding
given the income level), then E[E(Y1|X,T = 1)] would become
P(Y1 = 1) and E[E(Y0|X,T = 0)] would become P(Y0 = 1), so
that comparing 70.0% and 58.3% would give the average causal
effect.

A sensitivity analysis asks how the estimates might change
without the assumption of no confounding. In that case, peo-
ple are not equally likely to drink alcohol at the same level of
income, and those experiencing headaches might be more in-
clined to drink due to some unmeasured characteristics. The
overall probability of drinking alcohol is π(1) = 80% among
high-income people and π(0) = 40% among low-income peo-
ple. Our method postulates that the actual odds of drinking al-
cohol could differ from .8/.2 among high-income people and
.4/.6 among low-income people by at most a factor of some
number � ≥ 1. Alternatively, unmeasured confounding says
that being a drinker might be related to some unmeasured
characteristic that increases the probability of experiencing

headaches at each level of income. For example, the probability
of experiencing headaches for high-income drinkers could be
larger than that of experiencing headaches if high-income non-
drinkers did drink. It is equivalent to postulate that the coun-
terfactual probabilities could differ from the corresponding ob-
served probabilities by at most a factor of �.

For a fixed value of �, our method proceeds as follows.
First, it weights each drinker i by λ1iw1(Xi), 1 ≤ i ≤ 120, and
each nondrinker i by λ0iw0(Xi), 121 ≤ i ≤ 200, such that the
weighted probabilities of X match those in the sample,

120∑

i=1

λ1iw1(1)Xi = 1

2
,

120∑

i=1

λ1iw1(0)(1 − Xi) = 1

2
,

200∑

i=121

λ0iw0(1)Xi = 1

2
, and

200∑

i=121

λ0iw0(0)(1 − Xi) = 1

2
,

where �−1 ≤ λ1i, λ0i ≤ � are real numbers. Second, it ob-
tains lower and upper bounds for E[E(Y1|X,T = 0)] and
E[E(Y0|X,T = 1)], by minimizing and maximizing the
weighted probabilities of Y1 = 1 and Y0 = 1 over the unknowns
λ1i’s and λ0i’s,

min or max
120∑

i=1

λ1iw1(Xi)Yi

and

min or max
200∑

i=121

λ0iw0(Xi)Yi.

Similarly, bounds can be obtained for E(Y1) and E(Y0) by solv-
ing

min or max
120∑

i=1

[
π(Xi) + (1 − π(Xi))λ1i

]
w1(Xi)Yi

and

min or max
200∑

i=121

[
π(Xi)λ0i + (1 − π(Xi))

]
w0(Xi)Yi.

Let � = 1.5. The lower bound for E[E(Y1|X,T = 0)] is 55.0%
and that for E(Y1) is 64.5%, both achieved at λ1i = λ1(Xi,Yi)

where λ1(X,Y) = 1/1.4, 1.5, 1/1.2, and 1.5 for (X,Y) =
(1,1), (1,0), (0,1), and (0,0). The upper bound for E[E(Y0|X,

T = 1)] is 72.2% and that for E(Y0) is 66.9%, both achieved at
λ0i = λ0(Xi,Yi) where λ0(X,Y) = 1.3, 1/1.5, 1.2, and 1/1.5
for (X,Y) = (1,1), (1,0), (0,1), and (0,0). The observed
income-adjusted difference in experiencing headaches, 70.0%
versus 58.3%, between drinkers and nondrinkers could be ex-
plained away by some unmeasured characteristics such that
people experiencing headaches are more inclined to drink by
a factor of 1.52 = 2.25 in odds than those experiencing no
headaches at each level of income.

4.2 Distributional Specification

A sensitivity analysis investigates how inferences might
change given unmeasured confounding of various magnitudes.
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We continue the line of reasoning from equations (5) and (6)
and develop a sensitivity analysis method based on (Ĝ0, Ĝ1).

Assume that P(Yt|T = 1 − t,X) (i.e., the distribution of Yt

that would be observed for subjects with treatment 1 − t
and covariates X) is absolutely continuous with respect to
P(Yt|T = t,X) (i.e. the distribution of Yt that is observed for
subjects with treatment t and covariates X), t = 0,1. Define the
Radon–Nikodym derivative or the ratio of densities with respect
to a baseline measure,

λ0(X,Y0) = dP(Y0|T = 1,X)

dP(Y0|T = 0,X)
and

λ1(X,Y1) = dP(Y1|T = 0,X)

dP(Y1|T = 1,X)
.

The case where λ0 = λ1 = 1 corresponds to no confounding,
whereas deviations of λ0 and λ1 from 1 indicate unmeasured
confounding. For example, λ1(X,Y1) is <1 for larger values
of Y1 and >1 for smaller values of Y1 when treated subjects tend
to have larger outcomes than untreated subjects with the same X
would have under the treatment. By Bayes’s rule, λ0 and λ1 can
be expressed as odds ratios,

λ0(X,Y0) = (1 − π(X))P(T = 1|Y0,X)

π(X)P(T = 0|Y0,X)
and

λ1(X,Y1) = π(X)P(T = 0|Y1,X)

(1 − π(X))P(T = 1|Y1,X)
.

For the foregoing example, it is equivalent to say that subjects
with the same X but having larger outcomes under the treatment
are more likely to be treated.

The characterization of unmeasured confounding through λt

is related to selection odds models of Robins et al. (1999). Let
qt(x, yt) be a known function to be varied in sensitivity analysis
(t = 0,1). A nonparametric selection odds model is

logit P(T = t|X,Yt) = log bt(X) − log qt(X,Yt),

where bt(x) is an unknown function on X . Equivalently,
the model says that λt(x, yt) is proportional to qt(x, yt) at
each x ∈ X ,

λt(X,Yt) = qt(X,Yt)

at(X)
,

where at(x) = ∫
qt(x, yt)dP(yt|T = t,x). If X is high-dimen-

sional with continuous components, then parametric assump-
tions are needed on at or bt to avoid the curse of dimensionality
in estimation. In this case, Rotnitzky, Robins, and Scharfstein’s
(1998) augmented IPW estimators can be inconsistent in either
direction. Moreover, Robins et al. (1999, sec. 7.2) showed that
the estimators can be incompatible with any joint distribution
of (X,Y0,Y1,T), because implications from the two treatment
arms conflict. Consequently, we avoid parametric specifications
and work with bounds on λt.

Suppose that the odds of receiving the treatment for subjects
with covariates X could be different from π(X)/(1 − π(X)) by
at most a factor of �,

�−1 ≤ λt(X,Yt) ≤ �, (9)

where � ≥ 1 indicates the degree of departure from no con-
founding (t = 0,1). The model is similar to the model of

Rosenbaum (2002a, sec. 4.2) but has a slightly different para-
meterization. Rosenbaum’s model says that the odds ratio of re-
ceiving the treatment for two subjects with Xi = Xj is at most �,

�−1 ≤ π(Xi,Ui)(1 − π(Xj,Uj))

(1 − π(Xi,Ui))π(Xj,Uj)
≤ �,

where � ≥ 1 is a sensitivity parameter, U is an unmeasured co-
variate such that T ⊥ (Y0,Y1)|(X,U), and π(X,U) = P(T = 1|
X,U). If � = √

2 or � = 2, then two subjects who appear sim-
ilar, with the same X, could differ in their odds of receiving the
treatment by as much as a factor of 2.

The distributions (H0,H1) can be estimated consistently by
(Ĝ0, Ĝ1); see Theorem 7. Let Hc

1 be the composite distribution
P(Y0|T = 1,X)P(X) and let Hc

0 be the composite distribution
P(Y1|T = 0,X)P(X). By the definition of λt, the distributions
(Hc

0,Hc
1) are related to (H0,H1) by

dHc
1 = λ0(X,Y0)dH0 and dHc

0 = λ1(X,Y1)dH1.

By (5) and (6), the distributions (G0,G1) are related to (H0,H1)

by

dG0 = (1 − π(X))dH0 + π(X)dHc
1

and

dG1 = (1 − π(X))dHc
0 + π(X)dH1.

If λ0 and λ1 were known, then (Hc
0,Hc

1) could be estimated
by substituting (Ĝ0, Ĝ1) for (H0,H1), and (G0,G1) could be
estimated similarly. The estimated distributions can be exam-
ined in various ways. The marginal distributions of X from
Hc

1−t and Ht should be similar. Comparison of the marginal
distributions of Yt from Hc

1−t and Ht reveals hidden bias. More-
over, comparison of the marginal distribution of Y1−t from Hc

t
and that of Yt from Ht has a causal interpretation.

For sensitivity analysis, we consider several values of �

and find bounds on E[E(Yt|T = 1 − t,X)] = ∫
ytλt dHt under

model (9) given each �. Although the model assumes no func-
tional forms on λt, we need to take into account the fact that
λt is a Radon–Nikodym derivative at each x ∈ X . By defini-
tion, λt dHt and Ht induce the same marginal distribution on X .
Equivalently, λt satisfies

∫
h(x)λt dHt(x, yt) =

∫
h(x)dHt(x, yt) (10)

for each bounded function h on X . If X has a continuous com-
ponent, then infinitely many constraints are required to guaran-
tee the marginal equality of λt dHt and Ht on X . Our method is
to take a finite collection of constraints and obtain conservative
bounds. The idea of using constraints (10) is similar to using
constraints (1) in Section 3, but with an important difference.
Here the constraint associated with π̂ is on a more equal foot-
ing with others. The bounds depend on all of the constraints
included and become no wider as more constraints are included
in finite samples and asymptotically.

Let ĥc = (π̂ ,1 − π̂ , ĥ1, . . . , ĥmc) be mc + 2 real-valued func-
tions on X . For a fixed value of �, we obtain bounds on∫

ytλt dHt by solving the linear programming (LP)

min or max
∫

ytλt dĜt
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subject to
∫

λtdĜt = 1,

∫
π̂(x)λt dĜt =

∫
π̂ (x)dĜt,

∫
ĥj(x)λt dĜt =

∫
ĥj(x)dĜt, j = 1, . . . ,mc,

and

�−1 ≤ λt ≤ �.

Each of these integrals is a finite sum because Ĝt is a discrete
distribution supported on {(Xi,Yi): i = 1, . . . ,n1} or {(Xi,Yi):
i = n1 + 1, . . . ,n}. The unknowns are the values of λt on ob-
served data, λ1(Xi,Yi), i = 1, . . . ,n1, or λ0(Xi,Yi), i = n1 + 1,

. . . ,n. We evaluate the expectation E(Yt) = ∫
yt dGt at the same

extreme values of λt. Alternatively, bounds can be obtained by
solving the corresponding linear programming problem, and the
extreme values of λt can be different; see Section 4.1 for a spe-
cial case.

Let λ̂t be the solution to the sample LP. It is straightfor-
ward to show that λ̂t takes at most mc + 2 other values than
�−1 and �. Let h∗c = (π∗,1 − π∗,h∗

1, . . . ,h∗
mc) be the asymp-

totic limit of ĥc, and consider the linear programming

min or max
∫

ytλt dHt

subject to
∫

λt dHt = 1,

∫
π∗(x)λt dHt =

∫
π∗(x)dHt,

∫
h∗

j (x)λt dHt =
∫

h∗
j (x)dHt, j = 1, . . . ,mc,

and

�−1 ≤ λt ≤ �.

Let λ∗
t be the solution to the population LP. We conjecture that

λ̂t dĜt converges weakly to λ∗
t dHt at rate n−1/2, and plan to

investigate the asymptotic theory in future work. The marginal
distribution of λ∗

t dHt on X can be different from the underly-
ing P(X), and λ∗

0 dH0 and λ∗
1 dH1 can be different from each

other on X . However, the minimum (or maximum)
∫

ytλ
∗
t dHt

is at least as small (or large) as what is strictly implied by
model (9), because the constraints are contained in model (9).
Our method generally involves incompatible distributions like
that of Robins et al. (1999) but yields conservative bounds as-
ymptotically.

The method in this section allows us to calculate bounds for a
range of values of � in a study. There are two approaches to in-
terpreting the bounds (see Robins 2002b; Rosenbaum 2002b).
One approach is to find the smallest value �s such that the
qualitative conclusions are altered, and report that the study
becomes sensitive to unmeasured confounding at �s. This ap-
proach exploits the fact that � is on the common scale of odds
ratio and centers on an objective measure calculated from the

data without reference to substantive meanings. The other ap-
proach is to decide a cutoff �c below which the values of �

are considered plausible, and examine how the inferences might
change for � over the range of plausible values. It is essential to
judge what values of � are plausible from substantive knowl-
edge. But this task can be enormously difficult, because the
meaning of � depends on the covariates X that are conditioned
on in the analysis, as discussed by Scharfstein et al. (1999) and
Robins (2002b) for related methods. We recommend carefully
implementing either approach with its own caveat.

4.3 Mean Specification

Brumback et al. (2004) and Robins (1999) proposed a
method for sensitivity analysis by quantifying unmeasured con-
founding or hidden bias through

ct(X) = E(Yt|T = 1 − t,X) − E(Yt|T = t,X)

and generalized it to longitudinal studies. Here we consider a
different implementation by specifying bounds rather than ex-
act forms for this function, and highlight an interesting phe-
nomenon associated with this method.

Suppose that unmeasured confounding is such that �−
t ≤

ct(X) ≤ �+
t , where �−

t and �+
t are sensitivity parameters

(t = 0,1). This specification contains the functional forms c1,
c2, and c3 of Brumback et al. (2004, sec. 3.1). For example,
�+

1 = 0 and �−
1 < 0 indicate that treated subjects on average

have larger outcomes by as much as |�−
1 | than untreated sub-

jects would have under the treatment at each level of X. By
the bias formula following (7) and (8), E(Yt) is bounded by
E[E(Yt|T = t,X)] + �±

t E[P(T = 1 − t|X)], which can be esti-
mated by

µ̃t + �−
t p̃1−t ≤ µt ≤ µ̃t + �+

t p̃1−t,

where p̃1 = n−1 ∑n
i=1 Ti and p̃0 = 1 − p̃1. Similarly, bounds

can be obtained for µ1 − µ0. Consider the case where �−
0 =

�+
1 = 0 and �+

0 = −�−
1 = � ≥ 0 (i.e., treated subjects tend to

have larger outcomes under either treatment). It follows that the
inequality
{
µ̃1 − µ̃0 − zα/2 se(µ̃1 − µ̃0)

} − �

≤ µ1 − µ0 ≤ µ̃1 − µ̃0 + zα/2 se(µ̃1 − µ̃0)

holds with probability ≥ 1 − α asymptotically. There is signif-
icant evidence for a positive treatment effect if the lower confi-
dence bound (in the curly brackets) is positive at α = 95% and
if no confounding is assumed (� = 0). Moreover, the evidence
would persist as long as hidden bias � were considered smaller
than the lower confidence bound.

The distributional and mean specifications represent two
different views on unmeasured confounding. The function
λt(X,Yt) is on a unit-free scale with two useful interpretations
as density ratio and odds ratio, whereas the function ct(X) di-
rectly gives hidden bias in the scale of outcomes. Choosing
plausible values is difficult for both cases.

5. DATA ANALYSIS

Right heart catheterization (RHC) is a medical procedure
performed daily in hospitals since the 1970s. Many physicians
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believe that RHC leads to better patient outcomes; however,
the benefit of RHC has not been demonstrated in a randomized
clinical trial. Physicians could not ethically participate in such
a trial or encourage a patient to participate if convinced that
the procedure is beneficial. In this context, the observational
study of Connors et al. (1996) was influential, raising the con-
cern that RHC may not benefit patients and may in fact cause
harm. The original analysis used propensity score matching and
Rosenbaum and Rubin’s (1983b) method. We analyze their data
using the new methods and illustrate the values of our approach
to causal inference.

The study of Connors et al. included 5,735 critically ill pa-
tients admitted to the intensive care units of 5 medical cen-
ters. For each patient, treatment status T (=1 if RHC was used
within 24 hours of admission and 0 otherwise), health out-
come Y (survival time up to 30 days), and a comprehensive
list of 75 covariates X (specified by a panel of 7 specialists in
critical care) were recorded. Comparing the covariates between
the 2,184 patients managed with RHC and the 3,551 patients
without RHC suggests that the two groups differ significantly
in many of the covariates; see Figure 2 for the histograms of
three covariates discussed in Connors et al. (1996).

First, we fit the propensity score (i.e., the association of RHC
with 75 covariates) using logit regression. The first model in-
cludes a constant term and the main effects of 75 covariates. As
noted in Section 3, we calculate the statistic (4) over its standard
error to check the adequacy of the model. Here the ĥj’s are taken
to be the components of π̂ (X)(1,X) and (1 − π̂(X))(1,X); see
the left and right boxplots above model 1 in Figure 1. The z-
ratios are overly large in absolute value, indicating that the first
model does not give a good fit. A sequence of models are then

Figure 1. Checking Propensity Score Models.

constructed stepwise by adding interactions of 75 covariates;
Figure 1 shows the z-ratios from these models. The distribu-
tions of z-ratios indicate a gradual improvement. For the final
model, the z-ratios appear to be reasonably distributed as stan-
dard normal, indicating that the model gives a satisfactory fit.
Overall, patients managed with RHC have higher propensity
scores (i.e., higher probabilities of receiving RHC) than those
without RHC. Nevertheless, there is a considerable overlap in
these probabilities between the two groups.

The fitted propensity score varies from patient to patient.
Therefore, the distribution of observed outcome from the
treated (or untreated) group is a distortion of that of poten-
tial outcome that would be observed had each patient received
RHC (or none had received RHC). For the simple choice
ĥ(1) = (π̂ , 1 − π̂ ), the method in Section 3 is used to recover
the joint distribution of covariates and each potential outcome.
Two copies of the marginal distribution of each covariate can
be extracted on the treated and untreated groups; see Figure 2
for the weighted histograms of three covariates. Each pair of
corresponding histograms agree with one another, indicating
that the covariates are balanced across the treated and untreated
groups after weighting. The marginal distribution of each po-
tential outcome can also be extracted; Figure 2 presents the
weighted survival curves together with the raw survival curves.
It is interesting that the survival curve with RHC is always lower
than that without RHC even after adjustment.

We consider other choices of ĥ for variance and bias reduc-
tion (see Hirano and Imbens 2002 for a related analysis). First,
two linear regression models of 30-day survival (i.e., Y ≥ 30)
on 75 covariates are fit to the treated group and the untreated
group separately. Six most significant covariates are identified
from the two models: 2-month predicted survival probability
(X1), Duke activity status index (X2), do-not-resuscitate sta-
tus (X3), bilirubin (X4), primary disease category coma (X5),
and second disease category cirrhosis (X6). Second, two logit
regression models are fit to the two groups separately. With
ĥ(1) = (π̂ ,1 − π̂ , π̂g0, (1 − π̂)g1), the average causal effect of
RHC on 30-day survival is estimated for each of the following
choices: (a) X1, . . . , X6 are sequentially added to g0 and g1,
(b) the fitted values from the two linear models are taken to be
g0 and g1, and (c) the fitted values from the two logit models are
taken to be g0 and g1; see Table 4. Different choices of ĥ(1) lead
to similar estimates. The standard errors show a minor reduc-
tion after ĥ(1) includes (π̂,1 − π̂) but are considerably smaller
than that of the IPW estimate.

In the foregoing estimation, it is assumed that two patients
with the same measured covariates (or, equivalently, the same
propensity score) have the same chance of receiving RHC re-
gardless of their unmeasured characteristics. We use the method
in Section 4 to investigate the range of estimates under various
deviations from this assumption. In such cases, the distribution
of (X,Yt) estimated previously converges not to P(Yt|X)P(X),
but rather to Ht = P(Yt|T = t,X)P(X). For several values of �,
extreme values of the expectation of Yt from Hc

1−t = P(Yt|T =
1 − t,X)P(X) are obtained by linear programming with ĥc =
(π̂ ,1 − π̂ , π̂X, (1 − π̂ )X); see Table 5. The marginal distribu-
tion of each covariate from Hc

1−t (or, more relevantly, Hc
t ) can

be compared with the corresponding one from Ht; see Figure 3
for the weighted histograms of three covariates.
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Table 4. No-Confounding Estimation

REG LIK

Diff SE Diff SE Diff SE

1 −.0433 .0159 −.0433 .0158 IPW −.0461 .0268
1 + X1 −.0400 .0150 −.0406 .0158 Linear
1 + X1 + X2 −.0404 .0149 −.0407 .0157 REG −.0507 .0150
1 + X1 + X2 + X3 −.0465 .0159 −.0487 .0155 LIK −.0504 .0150
1 + X1 + · · · + X4 −.0474 .0160 −.0491 .0154 Logit
1 + X1 + · · · + X5 −.0476 .0159 −.0494 .0153 REG −.0510 .0149
1 + X1 + · · · + X6 −.0476 .0159 −.0485 .0153 LIK −.0522 .0148

NOTE: The estimates are based on µ̂
(m)
t and µ̃

(m)
t , with standard errors from Theorem 6(a) and (b). The raw estimate is −.0736. The estimates

based on fitted values are −.0626 from linear regression and −.0642 from logit regression.

For � = 1.5, the odds of receiving RHC could differ from
that implied by the propensity score by at most a factor of 1.5.
The counterfactual probability of 30-day survival might be as
small as 57.5% had RHC been withheld from patients with
RHC (from Hc

1), and as large as 74.3% had RHC been ap-
plied to patients without RHC (from Hc

0). In comparison, the
observed probability of 30-day survival is estimated as 64.0%
for patients with RHC (from H1) and 69.2% for patients without
RHC (from H0). Figure 3 compares the survival curves from Hc

0
and Hc

1 with those from H0 and H1. The curve from H1 is below
that from H0, but H1 is above Hc

1 and Hc
0 is above H0. The ap-

pearance of a harmful effect of RHC could be explained away
by unmeasured confounding such that sicker patients are more
likely to receive RHC by a factor of �2 = 2.25 in odds than
healthier patients with the same covariates. This result is based
on fewer parametric assumptions and is slightly more conser-
vative than the results of Connors et al. (1996) and Lin et al.
(1998).

6. SUMMARY

We have adopted Rubin’s potential outcomes framework for
causal inference and proposed two methods serving comple-
mentary purposes. One of these methods can be used to esti-
mate average causal effects, assuming no confounding given
measured covariates. The other can be used to assess how the
estimates might change under various departures from no con-
founding. Both methods are developed from a nonparametric
likelihood perspective. We illustrate the methods by analyzing
the data from the observational study of Connors et al. (1996).

In this article we focus on the setting where treatment is
dichotomous, the average causal effect over the population is
sought, the outcome and covariates are completely recorded,
and the sample is iid. It remains for future work to relax these
assumptions and develop appropriate methods. For example,
the average causal effects over subpopulations give more spe-
cific information. Given a discrete covariate, the conditional
expectation of each potential outcome can be estimated by

the ratio of unconditional expectations. However, the direct
estimates are unsatisfactory for subpopulations defined by a
continuous covariate or several covariates. It is desirable to in-
corporate parametric or semiparametric specifications along the
line of Robins’s (1999) marginal structural models.

APPENDIX: PROOFS

Proof of Theorem 1

The set of λ’s such that �n(λ) is finite is nonempty and open.
On this set, �n(λ) is strictly concave, because the log function is
strictly concave and the vectors (1, . . . ,1), (π∗(X1), . . . , π∗(Xn)),
(h∗

j (X1), . . . ,h∗
j (Xn)), j = 1, . . . ,m, are linearly independent. By as-

sumption, �n achieves a unique maximum at λ̂. Thus its first-order
derivatives of �n(λ) must be 0 at λ̂. It follows that the positive num-
bers

ŵ1i = 1

λ̂�h∗(Xi)
, i = 1, . . . ,n1,

and

ŵ0i = 1

1 − λ̂�h∗(Xi)
, i = n1 + 1, . . . ,n,

satisfy the constraints

n1∑

i=1

w1i = 1,

n∑

i=n1+1

w0i = 1,

n1∑

i=1

π∗(Xi)w1i =
n∑

i=n1+1

π∗(Xi)w0i,

and

n1∑

i=1

h∗
j (Xi)w1i =

n∑

i=n1+1

h∗
j (Xi)w0i, j = 1, . . . ,m.

Moreover, Jensen’s inequality implies that for any positive numbers
w1i, i = 1, . . . ,n1, and w0i, i = n1 + 1, . . . ,n, satisfying the foregoing

Table 5. Sensitivity Analysis

Λ Y1|T = 1, X Y1|T = 0, X Y0|T = 1, X Y0|T = 0, X Y1 Y0

1 .640 .640 .692 .692 .640 .692
1.2 .640 [.585, .690] [.641, .738] .692 [.608, .669] [.672, .709]
1.5 .640 [.514, .743] [.575, .789] .692 [.567, .700] [.646, .729]
2 .640 [.421, .801] [.482, .843] .692 [.514, .734] [.612, .750]

NOTE: The results are based on (Ĝ(m)
0 , Ĝ(m)

1 ), where the fitted values from the logit regression models are used in ĥ(1) . Standard errors of
differences, say .575 versus .640 discussed in the text, are approximately .014–.022.
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constraints,

1

n

n1∑

i=1

log
w1i

ŵ1i
+ 1

n

n∑

i=n1+1

log
w0i

ŵ0i

≤ log

[
1

n

n1∑

i=1

w1i

ŵ1i
+ 1

n

n∑

i=n1+1

w0i

ŵ0i

]

= log(1) = 0.

The equality holds if and only if w1i = ŵ1i, i = 1, . . . ,n1, and w0i =
ŵ0i, i = n1 + 1, . . . ,n. Thus these weights give the unique constrained
MLE (Ĝ0, Ĝ1).

Proof of Theorem 2

For convenience, we show the equivalent results in which h∗ is de-
fined as (1,π∗,h∗

1, . . . ,h∗
m). Consider the criterion function

�(λ) = E
[
T log(λ�h∗(X)) + (1 − T) log(1 − λ�h∗(X))

]
.

Then �(λ) is finite in a neighborhood �0 of λ0 = (0,1,0, . . . ,0)�
such that λ�h∗ is sufficiently close to λ�

0 h∗ = π∗ and contained in
[δ/2,1−δ/2] on X . For each fixed value of X, T log(λ�h∗(X))+ (1−
T) log(1 − λ�h∗(X)) is concave in λ. Under model S0 (i.e., π∗ = π ),
�(λ) achieves a unique maximum at λ0 due to Jensen’s inequality

E

[
log

{
(λ�h∗(X))T (1 − λ�h∗(X))1−T

π(X)T (1 − π(X))1−T

}]
≤ log(1) = 0.

The equality holds if and only if λ = λ0, because the functions in h∗
are linearly independent on X . Clearly, λ̂ is defined by maximizing the
sample version �n(λ), which converges to �(λ) with probability 1. By
direct calculations, we have

∂�n

∂λ
= Ẽ

[
Th∗(X)

λ�h∗(X)
− (1 − T)h∗(X)

1 − λ�h∗(X)

]

and

∂2�n

∂λ2
= −Ẽ

[
Th∗(X)h∗�(X)

(λ�h∗(X))2
+ (1 − T)h∗(X)h∗�(X)

(1 − λ�h∗(X))2

]
.

The second-order derivatives are uniformly bounded in the neighbor-
hood �0 because h∗ is bounded by � and λ�h∗ is contained in
[δ/2, 1−δ/2] on X . Moreover, the negative Hessian matrix converges
with probability 1,

−∂2�n

∂λ2
(λ0) → E

[
h∗(X)(T − π∗(X))2h∗�(X)

π∗2(X)(1 − π∗(X))2

]
= B1.

By the asymptotic theory of M-estimators from convex minimization
(Niemiro 1992), λ̂ converges to λ0 with probability 1, and has the ex-
pansion

λ̂ − λ0 = B−1
1

[
∂

∂λ
�n(λ0)

]
+ op

(
n−1/2)

= B−1
1 Ẽ

[
h∗(X)(T − π∗(X))

π∗(X)(1 − π∗(X))

]
+ op

(
n−1/2)

.

We show the results for µ̂1 and µ̃1; those for µ̂0 and µ̃0 follow simi-
larly. Note that λ̂�h∗ converges to π∗ (≥ δ) on X with probability 1.
Then λ̂�h∗/π∗ converges uniformly to 1 on X , and the right side of
the inequality

∣∣∣∣Ẽ
[

YT

λ̂�h∗(X)

]
− Ẽ

[
YT

π∗(X)

]∣∣∣∣ ≤
∥∥∥∥

π∗
λ̂�h∗ − 1

∥∥∥∥
sup

Ẽ

[∣∣∣∣
YT

π∗(X)

∣∣∣∣

]

tends to 0 with probability 1. Thus µ̂1 converges to µ1 with probabil-
ity 1. By a Taylor expansion about λ0, we obtain

µ̂1 = Ẽ

[
YT

π∗(X)

]
− Ẽ

[
YTh∗�(X)

π∗2(X)

]
(λ̂ − λ0) + op

(
n−1/2)

= Ẽ

[
YT

π∗(X)

]
− Ẽ

[
YTh∗�(X)

π∗2(X)

]
B−1

1 Ẽ

[
h∗(X)(T − π∗(X))

π∗(X)(1 − π∗(X))

]

+ op
(
n−1/2)

.

The remainder term in the first equation is

(λ̂ − λ0)�Ẽ

[
YTh∗(X)h∗�(X)

(λ†�h∗(X))3

]
(λ̂ − λ0) = op

(
n−1/2)

,

where λ† lies between λ̂ and λ0. Note that with probability 1,

Ẽ

[
YTh∗�(X)

π∗2(X)

]
→ E

[
YTh∗�(X)

π∗2(X)

]
= C1.

The first-order term is a regression estimator with a different estimator
of β1 than β̃1. We conclude the proof because two consistent estima-
tors of β1 yield equivalent regression estimators to first order.

Proof of Theorem 3

By direct calculations, we have

µ̃t = Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ) − (β̃�

t − β�
t )Ẽ(ξ∗

t )

= Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ) − Ẽ[(η∗

t − β�
t ζ∗

t )ξ∗�
t ]Ẽ−1(ζ∗

t ξ∗�
t )Ẽ(ξ∗

t )

= Ẽ(η∗
t ) − β�

t Ẽ(ξ∗
t ) − Ẽ[(η∗

t − β�
t ζ∗

t )ξ∗�
t ]E−1(ζ∗

t ξ∗�
t )E(ξ∗

t )

+ op
(
n−1/2)

.

The second equation follows from

β̃�
t − β�

t = Ẽ(η∗
t ξ∗�

t )Ẽ−1(ζ∗
t ξ∗�

t ) − β�
t

= Ẽ[(η∗
t − β�

t ζ∗
t )ξ∗�

t ]Ẽ−1(ζ∗
t ξ∗�

t ),

and the third equation follows from Ẽ−1(ζ∗
t ξ∗�

t )Ẽ(ξ∗
t ) − E−1(ζ∗

t ×
ξ∗�

t )E(ξ∗
t ) = op(1) and Ẽ[(η∗

t − β�
t ζ∗

t )ξ∗�
t ] = Op(n−1/2) because

E[(η∗
t − β�

t ζ∗
t )ξ∗�

t ] = 0.

Proof of Theorem 4

From the regularity conditions, it follows that (π̂ , ĥ) converges uni-
formly to (π∗,h∗) on X with probability 1. The proof is similar to
that of Theorem 2. Although �(λ) remains the same, the sample ver-
sion �n(λ) becomes

�n(λ) = Ẽ
[
T log(λ�ĥ(X)) + (1 − T) log(1 − λ�ĥ(X))

]
.

By the uniform convergence of (π̂, ĥ), it follows that �n(λ) converges
to �(λ), the second-order derivatives of �n(λ) are uniformly bounded
in a neighborhood of λ0, and

−∂2�n

∂λ2
(λ0) → E

[
h∗(X)(T − π∗(X))2h∗�(X)

π∗2(X)(1 − π∗(X))2

]
= B1.

By the asymptotic theory of M-estimators from convex minimization
(Niemiro 1992), λ̂ converges to λ0 with probability 1, and has the ex-
pansion

λ̂ − λ0 = B−1
[

∂

∂λ
�n(λ0)

]
+ op

(
n−1/2)

= B−1Ẽ

[
ĥ(X)(T − π̂(X))

π̂(X)(1 − π̂(X))

]
+ op

(
n−1/2)

.
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Note that λ̂�ĥ converges uniformly to π∗ (≥ δ) with probability 1.
Then λ̂�ĥ/π∗ converges uniformly to 1, and the right side of the in-
equality

∣∣∣∣Ẽ
[

YT

λ̂�ĥ(X)

]
− Ẽ

[
YT

π∗(X)

]∣∣∣∣ ≤
∥∥∥∥

π∗
λ̂�ĥ

− 1

∥∥∥∥
sup

Ẽ

[∣∣∣∣
YT

π∗(X)

∣∣∣∣

]

tends to 0 with probability 1. Thus µ̂1 converges to µ1 with probabil-
ity 1. By a Taylor expansion about λ0, we obtain

µ̂1 = Ẽ

[
YT

π̂(X)

]
− Ẽ

[
YT ĥ�(X)

π̂2(X)

]
(λ̂ − λ0) + op

(
n−1/2)

.

Note that with probability 1,

Ẽ

[
YTĥ�(X)

π̂2(X)

]
→ E

[
YTh∗�(X)

π∗2(X)

]
= C1.

Thus µ̂1 has the first given expansion. It remains to show the asymp-
totic expansions

Ẽ(η̂1) = Ẽ(�⊥[η∗
1 |s∗]) + op

(
n−1/2)

and

Ẽ(ξ̂1) = Ẽ(�⊥[ξ∗
1|s∗]) + op

(
n−1/2)

,

where �⊥[η∗
1 |s∗] = η∗

1 − W1V−1s∗, �⊥[ξ∗
1|s∗] = ξ∗

1 − U1V−1s∗,

W1 = E[η∗
1s∗�], and U1 = E[ξ∗

1s∗�]. By Taylor expansions about γ ∗,
we obtain

Ẽ(η̂1) = Ẽ(η∗
1) − Ẽ

[
YT

π∗2(X)

∂π(X;γ ∗)

∂γ

]
(γ̂ − γ ∗) + op

(
n−1/2)

and

Ẽ(ξ̂1) = Ẽ(ξ∗
1) − Ẽ

[
h∗(X)T

(1 − π∗(X))π∗2(X)

∂π(X;γ ∗)

∂γ

]
(γ̂ − γ ∗)

+ op
(
n−1/2)

.

The second expansion is simplified because the extra coefficient of
(γ̂ − γ ∗) is negligible,

Ẽ

[
∂

∂γ

(
h(X;γ ∗)

1 − π(X;γ ∗)

)(
T

π∗(X)
− 1

)]

→ E

[
∂

∂γ

(
h(X;γ ∗)

1 − π(X;γ ∗)

)(
T

π∗(X)
− 1

)]
= 0.

Note that with probability 1,

Ẽ

[
YT

π∗2(X)

∂π(X;γ ∗)

∂γ

]
→ E

[
YT

π∗2(X)

∂π(X;γ ∗)

∂γ

]
= W1

and

Ẽ

[
h∗(X)T

(1 − π∗(X))π∗2(X)

∂π(X;γ ∗)

∂γ

]

→ E

[
h∗(X)T

(1 − π∗(X))π∗2(X)

∂π(X;γ ∗)

∂γ

]
= U1.

It follows from the discussion in the text that µ̂1 has the second given
expansion.

Proof of Theorem 5

As in the proof of Theorem 3, we have

µ̃t = Ẽ(η̂t) − β�
t Ẽ(ξ̂ t) − Ẽ[(η̂t − β�

t ζ̂ t)ξ̂
�
t ]Ẽ−1(ζ̂ t ξ̂

�
t )Ẽ(ξ̂ t)

= Ẽ(η̂t) − β�
t Ẽ(ξ̂ t) − Ẽ[(η̂t − β�

t ζ̂ t)ξ̂
�
t ]E−1(ζ∗

t ξ∗�
t )E(ξ∗

t )

+ op
(
n−1/2)

.

The result follows from the expansion

Ẽ(η̂t) = Ẽ(η∗
t ) + Ẽ(∂η∗

t /∂γ )(γ̂ − γ ∗) + op
(
n−1/2)

= Ẽ(η∗
t ) + E(∂η∗

t /∂γ )V−1Ẽ(s∗) + op
(
n−1/2)

and other similar expansions for Ẽ(ξ̂ t) and Ẽ[(η̂t − β�
t ζ̂ t)ξ̂

�
t ].

Proof of Theorem 7

The proof is similar to those of Theorems 4 and 5. It is sufficient to
show that under model S (i.e., π∗ = π ),

E

[
YT

π∗(X)

]
= E[E(Y1|T = 1,X)].

It follows from two applications of the rule of iterated expecta-
tions, E(YT|X) = E(Y · 1|T = 1,X)P(T = 1|X) + E(Y · 0|T = 0,X) ×
P(T = 0|X) = E(Y1|T = 1,X)π(X) and E[YT/π∗(X)] = E[E(YT|X)/

π∗(X)].
[Received August 2004. Revised October 2005.]
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