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Abstract: The accessibility of vast volumes of unlabeled data has sparked growing inter-

est in semi-supervised learning (SSL) and covariate shift transfer learning (CSTL). In this

paper, we present an inference framework for estimating regression coefficients in condi-

tional mean models within both SSL and CSTL settings, while allowing for the misspecifi-

cation of conditional mean models. We develop an augmented inverse probability weighted

(AIPW) method, employing regularized calibrated estimators for both propensity score (PS)

and outcome regression (OR) nuisance models, with PS and OR models being sequentially

dependent. We show that when the PS model is correctly specified, the proposed estima-

tor achieves consistency, asymptotic normality, and valid confidence intervals, even with

possible OR model misspecification and high-dimensional data. Moreover, by suppressing

detailed technical choices, we demonstrate that previous methods can be unified within our

AIPW framework. Our theoretical findings are verified through extensive simulation studies

and a real-world data application.
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1. Introduction

In recent years, vast volumes of unlabeled data have become increasingly accessible,

sparking growing interest in how to leverage these data in both academic research

and industrial applications. One of the active areas of research is semi-supervised

learning (SSL). In addition, covariate shift transfer learning (CSTL) also exploits

information from unlabeled data. Both have various application scenarios like com-

puter vision (Sohn et al., 2020; Zhou and Levine, 2021; Zheng et al., 2022), natural

language process (Chen and Huang, 2016; Ruder et al., 2019; Zhao et al., 2022),

causal inference (Alvari et al., 2019; Aloui et al., 2023; Zhang et al., 2023), health-

care data analysis (Castro et al., 2020; Liu et al., 2023; Tang et al., 2024), etc.

In both SSL and CSTL settings, we have access to a labeled dataset L and an

unlabeled dataset U , where the labeled dataset L contains observations with both

the covariates X and the outcome Y , while the unlabeled dataset U consists solely

of observations with the covariates X. The training set T is the union of L and

U . Nevertheless, there is a key distinction between the classic SSL and CSTL se-

tups (Chapelle et al., 2006; Liu et al., 2023). In CSTL, the conditional distributions

of Y given X in the labeled and unlabeled datasets are assumed to be the same,

whereas the marginal distributions of X are different (hence the term covariate

shift), and the estimator is ultimately evaluated on unlabeled data. However, under

the classic SSL setup, it is assumed that the distributions of labeled data, unlabeled



data, and population are the same, making no difference in evaluating the estimator

on which distribution. To accommodate both SSL and CSTL, we consider a more

general setting. We only assume the conditional distribution of Y given X is the

same in labeled and unlabeled data, while marginal distributions of X are permit-

ted to be different. Estimators evaluated on the population and unlabeled data are

both considered.

While there is a long history of SSL (Chapelle et al., 2006; Zhu, 2008) and

CSTL (Quiñonero-Candela et al.,2009), a growing literature has considered inference

procedures only recently. Notable advancements have been made in estimating the

population mean E(Y ) (Zhang et al., 2019; Zhang and Bradic, 2021) and regression

coefficients or fixed linear combinations in (generalized) linear models regressing

Y against a sub-vector of X (Chakrabortty, 2016; Liu et al., 2023) or in linear

models regressing Y against full X (Chakrabortty and Cai, 2018; Chakrabortty

et al., 2019; Deng et al., 2023; Zhang et al., 2023; Chen and Zhang, 2023). See

Section 5.1 and Supplement Section S2 for further information. Inferences of quantile

regression (Chakrabortty et al., 2022), explained variance (Cai and Guo, 2020), and

model performance metrics such as true and false positive rates (Gronsbell and Cai,

2017) have also attracted interest.

In this article, we focus on the inference of regression coefficients in (conditional)

mean models for Y against a sub-vector of X in SSL settings, hence called semi-

supervised regression analysis. We demonstrate a unified framework for estimating



and inferring these coefficients, particularly in cases where the (conditional) mean

model and outcome regression (OR) model E[Y |X] may be misspecified. Previous

SSL and CSTL methods that considered this type of problems, such as Chakrabortty

(2016), Chakrabortty and Cai (2018), Zhang et al. (2019), Zhang and Bradic (2021)

and Liu et al. (2023), can largely be accommodated in the augmented inverse prob-

ability weighting (AIPW) framework (Robins et al., 1994; Tan, 2020a; Wu et al.,

2024). See Section 5 and Section 8 for further details.

Despite significant advancements made, there remain limitations in the previous

AIPWmethods. Methods developed in SSL settings usually treat the problem as the

one where data are missing completely at random (MCAR) (Chakrabortty, 2016;

Chakrabortty and Cai, 2018; Zhang et al., 2019; Zhang and Bradic, 2021). This

restricts their application scenarios and overlooks the significance of constructing

the propensity score (PS) model. In contrast, our setting is in general a missing-

at-random (MAR) problem (Little and Rubin, 2019), and the estimation of the PS

model is no longer negligible. In the setting of MCAR, the PS remains a constant,

whereas in the setting of MAR, the PS varies with the covariates X. In MAR

problems, similarly as in Tan (2020a), the estimation of PS and OR models needs

to be carefully handled in a way different from regularized least squares or maximum

likelihood as in previous papers, so that
√
N -consistent estimation can be achieved

with possible misspecification of the OR model, where N is the sample size of T .

In summary, we mainly make two contributions. First, we present an inference



framework that accommodates several previous settings, including the estimation of

population mean and regression coefficients in conditional mean models of Y given

any sub-vector of X under both SSL and CSTL setups. Second, we propose a novel

AIPW method that enables
√
N -consistent and asymptotically normal estimation

and achieves valid confidence intervals under suitable sparsity conditions, when the

PS model is correctly specified but the OR model may be misspecified. This ro-

bustness to model misspecification is achieved by carefully exploiting the connection

between PS and OR models and designing estimating equations for nuisance param-

eters, differently from regularized least-squares or maximum-likelihood estimation.

Previous related methods (Chakrabortty et al., 2019) achieve
√
N -consistency when

both PS and OR models are correctly specified and the estimated PS and OR func-

tions converge to the true values at fast enough rates (specifically, the product of

estimation errors is smaller than N−1/2). In contrast, our proposed estimator is

shown to be
√
N -consistent even when the estimated OR function converges to a

target value different from the true value and the estimated PS function converges

to the true value, both slower than N−1/2 (but faster than N−1/4), with misspecified

OR model and correctly specified PS model. Hence the aforementioned product of

estimation errors may be greater than N−1/2.

This work is also related to the causal inference problem under the strong ignor-

ability assumption (Rosenbaum and Rubin, 1983). Specifically, the SSL problem is

similar to estimating the average treatment effect (ATE) and the conditional ATE



(CATE) (Zimmert and Lechner, 2019; Fan et al., 2022; Wu et al., 2024). The CSTL

problem can be viewed as an analog to the estimation of the average treatment effect

on the treated (ATT).

The rest of this paper is organized as follows. In section 2, we present our setup

and define the target parameters of interest. In Section 3, we construct a novel

AIPW estimator for the target parameter. We show theoretical properties of the

proposed estimator in Section 4, and compare them with the previous literature in

Section 5. Numerical implementation is introduced in Section 6. An application

to a crime study is presented in Section 7. Extension of proposed methods to the

CSTL setting is given in Section 8 followed by concluding discussions in Section 9.

2. Setup and preliminaries

2.1 Data and target parameters

Let Y ∈ R be a response variable and X = (1, X1, . . . , Xd)
T ∈ Rd+1 be a covariate

vector with the first element being the constant 1. In addition, let R ∈ {0, 1} be the

indicator of whether Y is observed: R = 1 if observed and R = 0 if missing. Assume

that {(Xi, Yi, Ri) : i = 1, . . . , N} is an independent and identically distributed

(i.i.d.) sample from a joint distribution of (X, Y, R), denoted as P. The observed

dataset, {(Xi, RiYi, Ri) : i = 1, . . . , N}, can be split into a labeled dataset L =

{(Xi, Yi, Ri = 1), i = 1, . . . , n} and an unlabeled dataset U = {(Xi, Ri = 0), i =



2.1 Data and target parameters

n + 1, . . . , N}. For Z ∈ Rm, a sub-vector of X, it is of interest to fit a regression

model for the conditional mean E(Y |Z):

E(Y |Z) = ψ(β∗TZ), (2.1)

where E(·) denotes the expectation under P, β∗ is a parameter vector, and ψ(·) is an

(increasing) inverse link function, such as the identity function ψ(u) = u and logit

function ψ(u) = 1/{1+exp(−u)}. WhenZ is a strict sub-vector ofX, the parameter

β∗ can be seen to capture the marginal (or full) effect of Z on Y , as any indirect

effect of Z on Y through other covariates in X is marginalized out conceptually.

This is similar to marginal structural models (Robins, 1999; Wu et al., 2024). In

comparison, the coefficient sub-vector associated with Z in the full regression of Y

on X can be seen to represent the direct effect of Z on Y after accounting for the

influence of other covariates in X on Y .

Model (2.1) is allowed to be misspecified, that is, E(Y |Z) may not be in the

form ψ(βTZ). With possible model misspecification, β∗ is defined as the solution to

E [{Y − ψ(βTZ)}Z] = 0. (2.2)

For a generalized linear model with ψ(·) as the canonical inverse link, the estimating

equation (2.2) leads to maximum likelihood estimation, so that ψ(β∗TZ) can be



2.1 Data and target parameters

interpreted as the best likelihood-based approximation to E(Y |Z) using model (2.1).

The regression model (2.1) is flexible. The target parameter β∗ accommodates

a variety of estimands in the previous literature.

(a) If we set Z = 1 and ψ(u) = u, then β∗ = E(Y ). The problem corresponds

to the semi-supervised estimation of the population mean (Zhang et al., 2019;

Zhang and Bradic, 2021).

(b) If we set Z to be a univariate covariate, for example, Z = X1, then β
∗ cor-

responds to the regression coefficient in the regression model of Y given the

particular covariate X1. This problem was studied by Liu et al. (2023) and

Wu et al. (2024).

(c) If we set Z = X, then β∗ corresponds to the coefficient vector in the re-

gression model of Y given the full covariate vector X (Chakrabortty, 2016;

Chakrabortty and Cai, 2018; Chakrabortty et al., 2019; Deng et al., 2023;

Zhang et al., 2023).

The description above is general, without specifying dependency of the dimen-

sions of X and Z on N . Nevertheless, for our statistical theory (Section 4), we

allow the dimension of X to increase as N increases, but the dimension of Z is

fixed, and we study inference about the entire vector β∗. Hence our work is distinct

from Chakrabortty et al. (2019) in case (c) where Z = X is high-dimensional and

then the estimation objective is inferences about individual elements of β∗. See Sup-

plement Section S2 for a detailed comparison of our work and several papers men-
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tioned in case (c). On the other hand, for Chakrabortty (2016) and Chakrabortty

and Cai (2018) in case (c), Z = X is fixed-dimensional and inference about β∗ is

studied by incorporating kernel smoothing in fitting the OR function. Hence such

settings can be properly accommodated by our theory with fixed-dimensional Z but

high-dimensional X as basis functions (denoted as F or G later) for OR fitting.

In addition to the parameter vector β∗, it may also be of interest to consider

target parameters defined within unlabeled data corresponding to the CSTL setting,

as studied in several recent papers (Liu et al., 2023; He et al., 2024). To incorporate

this setting, we consider a regression model for the conditional mean in the unlabeled

data: E(Y |R = 0,Z) = ψ(β0∗TZ). With possible model misspecification, β0∗ is

defined as the solution to

E [(1−R) {Y − ψ(βTZ)}Z] = 0. (2.3)

To illustrate the main ideas, we focus on the estimation of β∗, and defer the associ-

ated results for the estimation of β0∗ to Section 8.

2.2 General assumptions

Without imposing any assumption, we cannot obtain a consistent estimator of β∗ due

to the missingness of Y in the unlabeled data. Below, we introduce the identifiability

assumption.



2.2 General assumptions

Assumption 1. Y ⊥⊥ R | X.

Assumption 1 is crucial for the identifiability of β∗ and β0∗. It ensures that

E(Y |X, R = 1) = E(Y |X, R = 0), indicating that the conditional mean of Y is the

same for both unlabeled and labeled data after accounting for the full covariates X.

This establishes the connection between the labeled and unlabeled data. Moreover,

Assumption 1 implies that P(R = 1|X, Y ) = P(R = 1|X), meaning that the label

indicator R depends solely on the covariates X, i.e., R is missing at random (Molen-

berghs et al., 2015; Imbens and Rubin, 2015). It should be noted that Assumption 1

does not imply Y ⊥⊥ R | Z when Z ̸= X. If Y ⊥⊥ R | Z and the regression models

are correctly specified, then β∗ = β0∗. Otherwise, the equality may not hold.

Despite bearing many similarities, Assumption 1 differs from the classic SSL

setup in the missing mechanism represented by the probabilistic behavior of R. SSL

assumes the missing-completely-at-randommechanism (MCAR) (Chakrabortty, 2016;

Chakrabortty and Cai, 2018; Zhang et al., 2019; Zhang and Bradic, 2021), that is,

R ⊥⊥ (X, Y ), thus P(R = 1|X) is a constant, independent of X. In contrast,

we allow R to probabilistically depend on X. In addition, we make the following

technical assumption.

Assumption 2. π∗(X) = P(R = 1|X) > c almost surely, for some constant 0 <

c < 1 independent of N and d.

This condition is introduced to ensure that each unit has a positive probability



2.3 AIPW estimating equations

of belonging to L. Then the labeled dataset L is of a non-negligible size compared

with N . By Assumption 2, the ratio n/N may randomly fluctuate but, as N → ∞,

converges to a value in the interval (0, 1], equal to E(n/N) = P(R = 1). This

distinguishes our sampling process from the stratified sampling process widely used

in the previous literature (Chakrabortty, 2016; Chakrabortty and Cai, 2018; Zhang

et al., 2019; Zhang and Bradic, 2021), where the sizes of labeled and unlabeled

datasets, n and N − n, are deterministic. For the asymptotic analysis, they assume

that both n and N tend to ∞ such that n/N converges to a value in [0, 1], including

zero. See Section 5 for a detailed discussion.

2.3 AIPW estimating equations

For estimating β∗, we introduce the augmented inverse probability weighting (AIPW)

estimating equations. Essentially the same AIPW estimating equation has been used

in the previous literature, albeit under somewhat different settings than ours. See

Section 5 for a connection and comparison of our method with the previous methods.

With the true PS model π∗(X) = P(R = 1|X), under Assumption 1, we have

E [{R/π∗(X)} {Y − ψ(βTZ)}Z] = E [{Y − ψ(βTZ)}Z]. Then a sample estimating

equation for β∗ is Ẽ [{R/π̂(X)}{Y − ψ(βTZ)}Z] = 0, where π̂(X) is an estimator of

π∗(X) and Ẽ denotes the sample mean, defined as Ẽ(U) = N−1
∑N

i=1 Ui for a variable

U . Let β̂IPW be a solution to the previous estimating equation. If the PS model

is correctly specified, then under certain regularity conditions, π̂(X)
P−→ π∗(X) and
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β̂IPW
P−→ β∗; If the PS model is misspecified, π̂(X) ̸ P−→ π∗(X) and β̂IPW ̸ P−→ β∗.

To mitigate the possible inconsistency of β̂IPW, the AIPW method introduces an

augmented term. Specifically, let m∗(X) = E[Y |X] be the true OR function and

m̂(X) be a corresponding estimator, the AIPW estimating equation is

Ẽ
[

R

π̂(X)
{Y − ψ(βTZ)}Z +

{
1− R

π̂(X)

}
{m̂(X)− ψ(βTZ)}Z

]
= 0. (2.4)

Let β̂AIPW be the solution to equation (2.4). If the PS model is misspecified,

the augmented term Ẽ [{1−R/π̂(X)} {m̂(X)− ψ(βTZ)}Z] corrects the bias of

Ẽ [{R/π̂(X)}{Y − ψ(βTZ)}Z] by introducing the estimator m̂(X). In addition, if

the PS model is correctly specified, the augmented term improves the estimation

efficiency of β∗ by leveraging the association between X and Y . It can be shown

that the left side of equation (2.4) converges in probability to that of equation (2.2),

if either π̂(X)
P−→ π∗(X) or m̂(X)

P−→ m∗(X), which is the property of double

robustness.

In the classic SSL setup, estimating β∗ is considered to be an MCAR problem,

where π̂(X) is a constant, independent of X, and the estimator m̂(X) is usually

defined using an OR model by (unweighted) least squares, maximum likelihood, or

variations (Chakrabortty, 2016; Chakrabortty and Cai, 2018; Zhang et al., 2019).

However, our semi-supervised regression is formulated as a MAR problem, where

π̂(X) depends onX. In such a scenario, as shown in the next section, the estimators



π̂(X) and m̂(X) for the PS and OR functions can be defined in a sequential manner,

different from least squares or maximum likelihood, in order to obtain desirable

properties with possible model misspecification.

3. Method

We develop a novel AIPW method that achieves
√
N -consistency in the setting of

sparse high-dimensional PS and OR models, even if the estimation of the PS model

exhibits convergence rates slower than N−1/2 and the OR model is misspecified.

3.1 Model specification for nuisance parameters

AIPW estimation based on the estimating equation (2.4) requires constructing the

estimators π̂(X) and m̂(X) for π∗(X) and m∗(X), using some PS and OR mod-

els. In contrast with the previous literature, we introduce a dependency between

π̂(X) and m̂(X) by carefully specifying basis functions and incorporating weighted

estimation.

Specifically, let F (X) = {1, f1(X), . . . , fp(X)}T be a vector of known functions

of X. We allow p to be high-dimensional, tending to infinity as N increases. As

in Tan (2020a), we propose using logistic regression as a working model for the PS

function π∗(X),

P(R = 1|X) = π(X; γ) = [1 + exp{−γTF (X)}]−1, (3.1)
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where γ is an unknown coefficient parameter.

Remark 1. In several related works on classic SSL and stratified sampling setups,

making efforts to estimate the PS may not be necessary. Firstly, in the classic SSL

setup, the true PS is a constant, leading to a constant PS model. Secondly, in the

stratified sampling setup, the proportion n/N is fixed and known, which corresponds

to a known PS function. Thus, researchers concentrate on specifying OR models.

Next, we turn to modeling the OR function m∗(X). The working model for

m∗(X) is specified as

E[Y |X] = m(X;α) = ψ{αTG(X)}, (3.2)

where G(X) = {1, g1(X), . . . , gq(X)}T is a vector of known functions of X and

q can be high-dimensional. In contrast to the previous literature, to ensure valid

inference even when the OR model is misspecified, we carefully specify a choice of

G(X) as follows:

G(X) = [F (X)T, {Z ⊗ F (X)}T]T, (3.3)

where Z ⊗ F (X) consists of all interactions between Z and F (X) (i.e., all prod-

ucts of individual components from Z and F (X)). Equation (3.3) represents the

minimal choice for G(X), and additional covariates can also be incorporated, such

as nonlinear terms of Z and F (X). Under sparsity conditions, these additional
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terms can be readily accommodated.

3.2 Estimation procedures

The proposed method consists of the following three steps: (a) estimating the param-

eter γ in the PS model (3.1); (b) estimating the parameter α in the OR model (3.2);

(c) estimating the target parameter β.

For estimating γ, we utilize a regularized calibrated estimator (Tan, 2020b),

defined as

γ̂ = argmin
γ∈Rp+1

LRCAL(γ) = argmin
γ∈Rp+1

{ℓCAL(γ) + λγ∥γ1:p∥1}, (3.4)

where ℓCAL(γ) = Ẽ[R exp{−γTF (X)}+(1−R)γTF (X)], λγ is a pre-specified tuning

parameter, || · ||1 denotes the L1-norm, and for any vector ν, νi:j is the sub-vector

of ν consisting of its i–th to j–th elements (both ends included). For a possibly

misspecified model π(X; γ), under suitable regularity conditions, γ̂ converges in

probability to its target value γ̄ defined by γ̄ = argminγ∈Rp+1 E[R exp{−γTF (X)}+

(1−R)γTF (X)].

For estimating α, we adopt a regularized weighted maximum likelihood estima-

tor (Tan, 2020a), defined as

α̂ = argmin
α∈Rq+1

LRWL(α; γ̂) = argmin
α∈Rq+1

{ℓWL(α; γ̂) + λα∥α1:q∥1}, (3.5)

where ℓWL(α; γ̂) = Ẽ(Rw(X; γ̂)[−Y αTG(X) + Ψ{αTG(X)}]), w(X, γ̂) = {1 −



π(X, γ̂)}/π(X, γ̂), Ψ(u) =
∫ u

0
ψ(t)dt is the antiderivative of ψ and λα is a tuning

parameter. Similar to the target value γ̄, we define the target value of α as ᾱ =

argminα∈Rq+1 E (Rw(X; γ̄) [−Y αTG(X)+Ψ{αTG(X)}]) .

After obtaining the estimators of γ and α, the proposed calibrated AIPW esti-

mator of β, denoted as β̂, is the solution to

Ẽ{τ(O, α̂, β, γ̂)} = 0, (3.6)

whereO = (X,Z, Y, R) and τ(O, α, β, γ) = {R/π(X; γ)}{Y−ψ(αTG)}Z+{ψ(αTG)

−ψ(βTZ)}Z. Our estimating equations (3.6) share the same form as the estimating

equations (2.4). However, there is a crucial distinction between our method and

previous related methods based on (2.4). In previous methods, the PS and OR

models are specified and fitted independently of each other, typically both by least

squares, maximum likelihood, or variations. In our method, the PS and OR models

are specified and fitted in a sequentially dependent manner. This design allows our

estimator β̂ to achieve
√
N -consistency in the presence of misspecified OR models.

4. Theoretical analysis

In this section, we present the theoretical analysis of the proposed estimator β̂. In

Section 4.1, we examine theoretical properties of estimators γ̂ and α̂ in PS and OR

models. Then, we study the asymptotic properties of the proposed estimator β̂ in
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Section 4.2. Finally, in Section 4.3, we extend our analysis to the classic SSL setting

(stratified sampling with constant PS).

4.1 Properties of the estimators for nuisance parameters

For simplicity, we denote F (X) and G(X) as F and G, respectively. All the

regularity Assumptions are given in the Supplement. In addition, let | · | denote

the cardinality of a set. We first present the properties of γ̂ based on Tan (2020a)

[Theorems 1 and 3].

Proposition 1. Suppose that Assumption S1 in the Supplement is satisfied, and λγ

in (3.4) is specified by λγ = A0λ0, where A0 > 1 is a constant defined in Assumption

S1. Then, with probability at least 1− 8ϵ,

D†
CAL(γ̂

TF , γ̄TF ) + (A0 − 1)λ0∥γ̂ − γ̄∥1 ≤M0|Sγ̄|λ20, (4.1)

where M0 > 0 is a constant, and D†
CAL(γ̂

TF, γ̄TF ) is the symmetrized Bregman Di-

vergence w.r.t ℓCAL(γ), i.e., D
†
CAL(γ̂

TF , γ̄TF ) = −Ẽ[R{exp(−γ̂TF ) − exp(−γ̄TF )}

(γ̂TF − γ̄TF )].

Note that D†
CAL(γ̂

TF , γ̄TF ) ≥ 0, then equation (4.1) implies that ∥γ̂ − γ̄∥1 ≤

{M0/(A0 − 1)}|Sγ̄|λ0, which indicates that the L1-convergence rate of the proposed

regularized calibrated estimator γ̂ is |Sγ̄|λ0, where |Sγ̄| is the nonzero size of γ̄ and

λ0 = cγ
√

ln{(1 + p)/ϵ}/N for some constant cγ. For example, taking ϵ = 1/(1 + p)
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gives λ0 = cγ
√

2 ln(1 + p)/N , which leads to ∥γ̂ − γ̄∥1 = O(|Sγ̄|
√

ln(1 + p)/N).

Proposition 2. Suppose Assumptions S1 and S2 in the Supplement are satisfied. If

ln{(1+p)/ϵ}/N < 1 and λα in (3.5) is specified as A1λ1, where A1 > 1 is a constant

defined in Assumption S2. Then with probability at least 1− 10ϵ,

D†
WL(α̂

TG, ᾱTG, γ̄) + exp(η01)(A1 − 1)λ1∥α̂− ᾱ∥1 ≤M11|Sγ̄|λ20 +M12|Sᾱ|λ21, (4.2)

where η01 is a constant defined in Lemma S9, M11 and M12 are constants defined

in Section S6.2 of Supplement; D†
WL(α̂

TG, ᾱTG, γ̄) is the symmetrized Bregman

divergence given by

D†
WL(α̂

TG, ᾱTG, γ̄) = Ẽ [Rw(X; γ̄){ψ(α̂TG)− ψ(ᾱTG)}(α̂TG− ᾱTG)] . (4.3)

Proposition 2 gives the convergence rate of α̂. Since D†
WL(α̂

TG, ᾱTG, γ̄) ≥ 0

and λ1 ≥ λ0 (Assumption S2(vi)), ∥α̂ − ᾱ∥1 ≤ cm(|Sγ̄| + |Sᾱ|)λ1 for some constant

cm > 0.

4.2 Large sample properties of the proposed estimator

In this subsection, we present the properties of the proposed estimator β̂.

Theorem 1. Suppose Assumptions 1, 2, and S1 – S3 in the Supplement are satisfied,

and the PS model (3.1) is correctly specified with π(·; γ̄) = π∗(·). If ln((1+p)/ϵ)/N <
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1, then the following results hold.

(i) The estimator β̂ is consistent and asymptotically normal, and
√
N(β̂−β∗)

d−→

N(0,Σ), where
d−→ denotes convergence in distribution, Σ = Γ−1ΛΓ−1 with Γ =

E{ψ1(β
∗TZ)ZZT}, and Λ = E {τ(O, ᾱ, β∗, γ̄)τ(O, ᾱ, β∗, γ̄)T}.

(ii) A consistent estimator of Σ is Σ̂ = Γ̂−1Λ̂Γ̂−1, where Γ̂ = Ẽ{ψ1(β̂
T

Z)ZZT} and Λ̂ = Ẽ
{
τ(O, α̂, β̂, γ̂)τ(O, α̂, β̂, γ̂)T

}
. Thus, for a constant vector c

with the same dimension of β, an asymptotic (1− η) confidence interval for cTβ∗ is

cTβ̂ ± zη/2

√
cTΣ̂c/N , where zη/2 is the (1 − η/2) quantile of the standard normal

distribution.

Theorem 1 shows that if the PS model is correct, and α → ᾱ at certain rate

(faster than N−1/4), regardless of whether the OR working model is correct, the

proposed estimator β̂ is
√
N–consistent and asymptotically normal, and the pro-

posed CIs based on Σ̂ are valid. In Section S1 of Supplement, we provide a detailed

discussion to explain how these properties are achieved and why, for a general choice

of Z, the correct specification of the PS model is assumed, although either PS model

or OR model is assumed to be correct in related work (Tan, 2020a).

In contrast, the estimator β̂IPW is not
√
N -consistent in general, even with a

correctly specified PS model, because in high-dimensional settings, the convergence

rate of π̂(X) is typically slower than N−1/2, leading to a slower convergence rate

of β̂IPW. Similarly, when the PS model is correctly specified but the OR model

is misspecified, the convergence rate of the AIPW estimator with the PS and OR
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functions being estimated using conventional regularized maximum likelihood as in

double machine learning (Chernozhukov et al., 2018) may also be slower than N−1/2.

Such double-machine learning estimators are only shown to achieve
√
N -consistency

when both PS and OR models are correctly specified and the estimated PS and OR

functions converge to the true values at fast enough rates (specifically, the product

of estimation errors is smaller than N−1/2).

4.3 Extension to stratified sampling with constant PS

To facilitate comparison with existing methods described in Section 5, we extend the

theoretical analysis of the proposed estimator to the classic SSL setting (stratified

sampling with constant PS), where the sizes of labeled and unlabeled datasets, n

and N − n, are deterministic. For fixed n and N , the observed data are generated

as follows:

• The labeled dataset (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P(X, Y |R = 1).

• The unlabeled dataset (Xn+1, . . . ,XN)
i.i.d.∼ P(X, Y |R = 0).

Moreover, by letting F = 1, π̂(X) = π(X; γ̂) = n/N (constant PS) and allowing

a general choice of G instead of (3.3), our AIPW estimator, denoted as β̂s, can be

rewritten as a solution to the following estimating equation:

1

n

n∑
i=1

{Yi − ψ(α̂TGi)}Zi +
1

N

N∑
i=1

{ψ(α̂TGi)− ψ(βTZi)}Zi = 0. (4.4)



Due to the constant π̂(X), our estimator α̂ reduces to the regularized unweighted

maximum likelihood or least squares estimator. The following proposition for β̂s

can be readily derived.

Proposition 3. Suppose that the conditions of Theorem 1 are satisfied with F = 1,

π∗(X) ≡ n/N , and a general choice of G, where Assumption S3(v) reduces to

|Sᾱ| ln(q + 1) = op(
√
n). Then we have

√
n(β̂s − β∗)

d−→ N(0,Σs), where Σs =

Γ−1ΛsΓ−1, with Γ defined as in Theorem 1 and Λs = E([Y − {(N − n)/N}ψ(ᾱTG)

−(n/N)ψ(β∗TZ)]2ZZT) + {(N − n)n/N2}E [{ψ(ᾱTG)− ψ(β∗TZ)}2ZZT].

For comparison, by letting F = 1 and π∗(X) ≡ n/N in Theorem 1, the variance

matrix Σ for β̂ such that
√
N(β̂ − β∗)

d−→ N(0,Σ) is Σ = Γ−1ΛΓ−1, where Λ =

E ([(N/n){Y − ψ(ᾱTG)}2 + {ψ(ᾱTG)− ψ(β∗TZ)}2]ZZT) + 2E([{Y − ψ(ᾱTG)}

{ψ(ᾱTG)− ψ(β∗TZ)}]ZZT). By direct calculation (see Section S8 of Supplement),

we have Σ/N = Σs/n, which means the asymptotic variances of β̂s and β̂ are the

same. Hence, in the classic SSL with constant PS, the asymptotic variances of our

estimators, β̂ under random sampling or β̂s under stratified sampling, are equivalent

to each other.

5. Comparison with previous methods

We first summarize various previous methods, all of which can be integrated into

the AIPW estimation framework. We also compare the asymptotic variances of our
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methods with previous ones. See Supplement Section S2 for a detailed comparison

of our paper with several related papers with regression of Y on high-dimensional

Z = X as mentioned in Section 2.1.

5.1 Unified framework

Various methods have been proposed in the classic SSL setting, i.e., stratified sam-

pling with constant PS (F = 1) as in Section 4.3 (Chakrabortty, 2016; Chakrabortty

and Cai, 2018; Zhang et al., 2019; Zhang and Bradic, 2021). From an AIPW point

of view, the major difference among previous methods lies in the choices of OR

working models. For example, Zhang et al. (2019) and Zhang and Bradic (2021)

proposed linear OR working models for the estimation of E(Y ), i.e., with Z =

1. Chakrabortty (2016) and Chakrabortty and Cai (2018) proposed using non-

parametric or semi-parametric OR working models, such as kernel smoothing or

partially linear model, for regression analysis with Z a sub-vector of X.

If we disregard the specific choice of the OR working model, the previous meth-

ods can be incorporated into the AIPW estimating framework. In our notation, the

previous estimators can be reformulated as solutions of

1

n

n∑
i=1

{Yi − ψ(α̂TGi)}Zi +
1

N

N∑
i=1

{ψ(α̂TGi)− ψ(βTZi)}Zi = 0, (5.1)

for different choices of Zi and ψ(·). Specifically, Zhang et al. (2019) and Zhang and
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Bradic (2021) correspond to the case of Z = 1 and ψ(·) is the identity function in

(5.1), while Chakrabortty (2016) corresponds to the case where Z is any sub-vector

of X and ψ(·) is an arbitrary inverse link function. Suppose a constant PS model

is used with π∗(X) ≡ n/N , then the AIPW estimating equation (3.6) or, in the

simplified form, (4.4) in Section 4.3, coincides with (5.1).

In addition, Chakrabortty and Cai (2018) adopted a variation of AIPW esti-

mating equations. By the assumption limn,N→∞ n/N → 0 and controlling kernel

smoothing in fitting OR working models, they made it possible to drop the labeled

part and only retain the augmented term of unlabeled data in (5.1). Their estimat-

ing equations can be reformulated in our notation as {1/(N−n)}
∑N

i=n+1{ψ(α̂TGi)−

ψ(βTZi)}Zi = 0, with ψ(·) to be identity function and Z = X, corresponding to

full linear regression.

5.2 Variance comparison

Under stratified sampling with constant PS, both estimators of Zhang et al. (2019)

and Zhang and Bradic (2021) of E(Y ) achieve asymptotic normality and their

asymptotic variance is Var(Y − ᾱTG) + (n/N)Var(ᾱTG). Under this setting,

by Proposition 3 with Z = 1, our AIPW estimator has the asymptotic variance

E {(Y − ᾱTG)2 + (n/N)(ᾱTG− β∗)2 + 2(n/N)(Y − ᾱTG)(ᾱTG− β∗)}, where β∗ =

E(Y ) = E(ᾱTG) and E{(Y − ᾱTG)G} = 0 by definition of ᾱ and the fact that G

includes 1. Then E {(Y − ᾱTG)(ᾱTG− β∗)} = E{(Y − ᾱTG)(ᾱTG)} = 0, and our



asymptotic variance reduces to Var(Y − ᾱTG) + (n/N)Var(ᾱTG) matching results

in Zhang et al. (2019) and Zhang and Bradic (2021).

Under stratified sampling with constant PS, the estimators of regression coeffi-

cients in conditional mean models proposed by Chakrabortty (2016) and Chakrabortty

and Cai (2018) achieve asymptotic normality under the assumption that limn,N→∞ n/N

→ 0. Their asymptotic variances satisfy

Γ−1Var[{Y − ψ(ᾱTG)}Z]Γ−1. (5.2)

In this setup, by Proposition 3, our estimator has the asymptotic variance Γ−1Var[{Y−

ψ(ᾱTG)}Z]Γ−1+(n/N)Γ−1E[{ψ(ᾱTG)−ψ(β∗TZ)}2ZZT]Γ−1+2(n/N)Γ−1E[{Y −

ψ(ᾱTG)}{ψ(ᾱTG)−ψ(β∗TZ)}ZZT]Γ−1, which, compared with (5.2), in general has

additional term (n/N)Γ−1
{
E([{ψ(ᾱTG)−ψ(β∗TZ)}2+2{Y −ψ(ᾱTG)}{ψ(ᾱTG)−

ψ(β∗TZ)}]ZZT)
}
Γ−1.

The additional term reduces to 0 under the condition limn,N→∞ n/N → 0, im-

plying that our result aligns with those of Chakrabortty (2016) and Chakrabortty

and Cai (2018) with the same condition.

6. Numerical implementation and simulation

We design experiments to evaluate the finite-sample performance of the proposed

method and compare it with several alternative methods: the IPW method with



Lasso-regularized maximum likelihood estimation for the PS model, AIPW methods

with Lasso-regularized maximum likelihood estimation for both the PS and OR

models without cross-fitting as in Tan (2020a), and AIPW methods with cross-

fitting and Lasso-regularized maximum likelihood estimation for both the PS and

OR models (Chernozhukov et al., 2018; Zhang and Bradic, 2021). These competing

estimators are denoted as IPW, AIPWRML, and AIPWCF, respectively. For the PS

and OR models, the basis functions F and G are specified as follows.

• AIPWRCAL: Given X = (1, X1, . . . , Xd)
T, let {ξi}ki=1 be k points equally spaced

within (−a, a), where d = 3, k = 49, and a = 3. Let fij(X) = (Xi − ξj)+,

i = 1, . . . , d, j = 1, . . . , k. Let F = {1, f11(X), . . . , f1nk
(X), . . . , fd1(X),

. . . , fdnk
(X)}T be basis functions in the PS model, and G = {F T, (Z

⊗
F )T}T be

basis functions in the OR model. The dimension of F is 148. For Z = 1, X1 ,X,

the dimensions of G are 148, 285 and 589, respectively.

• IPW: Let F be the basis functions for the PS model.

• AIPWRML: Let F and G = F be the basis functions for both PS and OR models,

respectively.

• AIPWCF: Let F and G = F be the basis functions for both PS and OR models,

respectively.

We consider the estimators of population mean for Z = 1, regression coeffi-

cients in the mean model for Z = X1 and Z = X, respectively. The data gener-

ating mechanisms and the associated numerical results are presented in Section S9



of Supplement. We evaluate methods with five metrics: Bias (Monte Carlo bias),

√
Var (Monte Carlo standard deviation),

√
EVar (square root of the mean of vari-

ance estimates), CP90 (coverage proportions of the 90% CIs), and CP95 (coverage

proportions of the 95% CIs). The simulation results demonstrate that the proposed

method AIPWRCAL has the smallest
√
Var and

√
EVar, and Bias. Moreover, CP90

and CP95 of the proposed method are more aligned with their nominal values of

0.90 and 0.95, respectively. This indicates the effectiveness of the proposed method

in terms of estimating both the population mean and regression coefficients. See

Section S9.3 of Supplement for more details.

7. Application

7.1 Data description

The Communities and Crime dataset comprises 1994 records of crime-related infor-

mation from communities in the USA, which combine socio-economic data from the

1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime

data from the 1995 FBI UCR. Each record includes a response ViolentCrimesPerPop

(total number of violent crimes per 100,000 population) and 127 covariates, encom-

passing both location information, such as state as well as county, and socio-

economic factors, such as PctTeen2Par (percent of kids age 12-17 in two parent

households), HousVacant (number of vacant households), PctHousNoPhone (per-
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cent of occupied housing units without phone) and PopDens (population density

in persons per square mile). In this study, we are interested in examining the

influence of univariate covariates on the response. We consider the case where

Z = (1, Xi)
T for a particular univariate covariate Xi as discussed in Section 2.1 and

denote β∗ = (β0, β1).

Due to the presence of numerous missing values in high-dimensional covariates,

we eliminate covariates with high missing ratios. See details of the pre-rocessing pro-

cedure in Section S10.1 of Supplement. After pre-processing, the analytical dataset

consists of 1993 observations and 26 covariates (i.e., d = 26). The shift in covari-

ates X is naturally introduced by the different states where the communities are

located. We set label indicator R for communities in New Jersey (Code 34) to be 1

and that for communities in other states to be 0 and remove the associated response

data if R = 0, resulting in 211 labeled observations and 1782 unlabeled observa-

tions. The covariate shift of the joint distribution of X was confirmed to exist using

a Gaussian kernel two-sample test with maximum mean discrepancy (You, 2023).

Additionally, we assess the shift of each individual covariate by a bootstrap version

of the Kolmogorov–Smirnov test (Sekhon, 2011). For results of those tests, please

see Section S10.2 of Supplement.

We randomly take 90% of labeled data and 90% of unlabeled data to form the

training set with the remaining data used for the testing set. From the remain-

ing 26 covariates, we select four representative ones: PctTeen2Par, HousVacant,
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PctHousNoPhone and PopDens, which illustrate different aspects of the socio-economic

characteristics of communities. Notice that the covariate shift exists in all four co-

variates.

We compare the proposed method with IPW, AIPWRML and AIPWCF methods

with piecewise linear basis functions introduced in Section 6. The PS and OR work-

ing models are estimated the same way as described in Section S9.2 of Supplement.

For details of the procedures for designing basis functions, please see Section S10.3

of Supplement.

7.2 Results

Table 1 presents the estimates of the regression coefficients β̂1 along with the predic-

tion mean squared error (MSE), which are calculated using the test data. It reveals

that the point estimates of the regression coefficient are similar across the differ-

ent methods. Notably, our estimators achieve the lowest prediction MSE except

PctTeen2Par, highlighting the superior performance of our methods in minimizing

predictive errors.

Table 1: Summary of β̂1 and prediction MSE

β̂1 prediction MSE
AIPWRCAL IPW AIPWRML AIPWCF AIPWRCAL IPW AIPWRML AIPWCF

PctTeen2Par -0.137 -0.172 -0.147 -0.256 0.034 0.032 0.034 0.044
HousVacant 0.107 0.261 0.073 0.133 0.046 0.085 0.046 0.047
PctHousNoPhone 0.123 0.245 0.103 0.050 0.036 0.058 0.039 0.047
PopDens 0.045 0.069 0.048 0.039 0.050 0.052 0.052 0.055

Moreover, signs of estimates of coefficients are the same among different meth-



ods for each covariate Z of interest. and they coincide with common sense and

previous studies. For example, the coefficients of PctTeen2Par are negative, since it

is believed to have protective effects in assaults (Luo and Qi, 2017); the coefficients

of HousVacan is positive, and criminological theories predict a positive association

between vacancy and crime since empty structures of houses could provide loca-

tions for some crimes (e.g., prostitution, drug dealing), and the absence of residents

may prevent social organization and reduce guardianship (Roth, 2019). Moreover,

AIPWRML and ours are close in all cases, while IPW estimators and AIPWCF esti-

mators are far from others in some cases.

In Figure 1, we compare the 95% CIs of AIPWRCAL, AIPWRML and AIPWCF.

From the CIs, we see that for AIPWRML and our estimators all four single effects are

significant. CIs of our estimators and of AIPWRML’s have similar lengths and are

overlapped, except HousVacant. The reason of the small difference is that the esti-

mates of β0 are a bit different. CIs of AIPWCF are much longer; for PctHousNoPhone

and PopDens, the estimates are not significant. Both phenomenons show that

AIPWCF is not as efficient as other two methods.

8. Extension to estimation of β0∗

Consider the estimation of β0∗, defined as a solution to estimating equations (2.3).

Under Assumption 1, E [R{1− π∗(X)}/π∗(X) {Y − ψ(βTZ)}Z] = E [{1−R}

{Y − ψ(βTZ)}Z] . Then a natural sample estimating equation for β0∗ is Ẽ[R{1 −



(a) PctTeen2Par (b) HousVacant

(c) PctHousNoPhone (d) PopDens

Figure 1: Comparison of 95% CIs of AIPWRCAL, AIPWRML and AIPWCF

π̂(X)}/π̂(X){Y −ψ(βTZ)}Z] = 0. We augment the estimating equations similarly

as described in Section 2.3 and obtain the sample AIPW estimating equations:

Ẽ
[
R{1− π̂(X)}

π̂(X)
{Y − ψ(βTZ)}Z +

{
1− R

π̂(X)

}
{m̂(X)− ψ(βTZ)}Z

]
= 0.

(8.1)

For the PS and OR models, we adopt a similar construction as in Section 3. Our

AIPW estimator for β0∗, β̂0, is defined as the solution to the estimating equa-

tions Ẽ{τ 0(O, α̂, β, γ̂)} = 0, where τ 0(O, α, β, γ) = ([R{1−π(X; γ)}/π(X; γ)]{Y −



ψ(βTZ)}+[{π(X; γ)−R}/π(X; γ)]{ψ(αTG)−ψ(βTZ)})Z. The asymptotic prop-

erties of β0∗ is given in Theorem 2.

Theorem 2. Under Assumptions 1–2 and S1 – S3 in the Supplement, if the PS

model (3.1) is correctly specified with π(·; γ̄) = π∗(·), and ln{(1 + p)/ϵ}/N < 1, we

have that

(i) the estimator β̂0 is consistent and asymptotically normal, and
√
N(β̂0 −

β0∗)
d−→ N(0,Σ0), where Σ0 = Γ0−1Λ0Γ0−1 with Γ0 = E[{1− π(X; γ̄)}ψ1(β

0∗TZ)

ZZT] and Λ0 = E {τ 0(O, ᾱ, β∗, γ̄)τ 0(O, ᾱ, β∗, γ̄)T}.

(ii) a consistent estimator ofΣ0 is Σ̂0 = Γ̂0−1Λ̂0Γ̂0−1, where Γ̂0 = Ẽ{ψ1(β̂
0TZ)ZZT}

and Λ̂0 = Ẽ
{
τ 0(O, α̂, β̂0T, γ̂)τ 0(O, α̂, β̂0T, γ̂)T

}
. Thus, for a constant vector c with

the same dimension of β, an asymptotic (1 − η) confidence interval for cTβ0∗ is

cTβ̂0T ± zη/2

√
cTΣ̂0c/N .

Theorem 2 shows that if the PS model is correct, regardless of the correctness of

OR working models, the proposed estimator β̂0 is consistent, asymptotically normal,

and the proposed CIs based on Σ̂0 are valid. Similarly to the estimation of β∗,

conclusions in Theorem 2 also hold in low-dimensional settings with a reduced form

of Assumptions S1 to S3.

We point out that the method of Liu et al. (2023) for CSTL can be viewed as an

AIPW estimator of β0∗ under the stratified sampling setting, where the labeled and

unlabeled datasets L and U are treated as two independent samples of fixed sizes



n and N − n. They employed partial linear models for both PS and OR working

models. By replacing their choices of semi-parametric nuisance models with our

parametric models, the estimator of β0∗ in Liu et al. (2023) can be reformulated as

the solution to the following estimating equations:

1

n

n∑
i=1

w(Xi; γ̂
s) [{Yi − ψ(α̂TGi)}Zi] +

1

N − n

N∑
i=n+1

[{ψ(α̂TGi)− ψ(βTZi)}Zi] = 0.

(8.2)

where w(Xi; γ̂
s) = exp(−γ̂sTFi) and Fi is the abbreviation of F (Xi); γ̂

s = (γ̂s0, γ̂
sT
1:p)

T

is an estimator of the parameter γs in an exponential tilt model, defined as

dG1 = exp(γs0 + γsT1:pF1:p)dG0, (8.3)

where G0 and G1 are two probability distributions for the unlabeled and labeled

data in F1:p and γs0 = − ln
{∫

exp(γsT1:pF1:p)dG0

}
to ensure that

∫
dG1 = 1. The

exponential tilt model (8.3) can be shown to be equivalent to the logistic PS model

(3.1), where the coefficients are related as follows (Prentice and Pyke, 1979; Qin,

1998; Tian et al., 2023):

γ0 = γs0 + ln

(
ρm

1− ρm

)
, γ1:p = γs1:p, (8.4)

where ρm = P(R = 1), the true value of the proportion of missing data. When



analyzing the asymptotic property in stratified sampling settings, we assume n/N

to be constant and, consequently, assume that ρm = n/N . On the other hand, our

estimating equations (8.1) can be rewritten as

1

N

n∑
i=1

w(Xi; γ̂) [{Yi − ψ(α̂TGi)}Zi] +
1

N

N∑
i=n+1

[{ψ(α̂TGi)− ψ(βTZi)}Zi] = 0,

(8.5)

where γ̂ = (γ̂0, γ̂1:p)
T is an estimator of the parameter γ in logistic PS model (3.1).

If the estimators γ̂s and γ̂ satisfy the same relationship as (8.4), i.e., γ̂0 = γ̂s0 +

ln{n/(N − n)} and γ̂1:p = γ̂s1:p, then one can see that {(N − n)/n}w(Xi; γ̂
s) =

exp(−γ̂TFi) = w(Xi; γ̂), and the two equations (8.2) and (8.5) match each other.

Thus, the different forms of (8.2) and (8.5) can be explained by the relationship of

the coefficient estimates between the exponential tilt model (8.3) and the logistic

regression model (3.1).

9. Discussion

We present a new AIPW method for the inference of regression coefficients in (con-

ditional) mean models in SSL and CSTL settings. We demonstrate that various

previous methods can be unified in our AIPW framework by suppressing detailed

technical choices. Our AIPW estimator achieves asymptotic normality, and valid

CIs can be obtained, whether or not the OR working model is correctly specified,

with high-dimensional data. Finite sample performances of the proposed method



are confirmed by a simulation study and an application to a real-world dataset.

Currently, the proposed CIs can only achieve single robustness to the misspeci-

fication of the OR model. Doubly robust CIs can be developed using the approach

of Ghosh and Tan (2022), albeit at the cost of increasing technical and numerical

complexities. In addition, how to handle the case where limn,N→∞ n/N → 0 under

the random sampling process is also technically challenging, since the “positivity as-

sumption” (Assumption 2) typical in missing data theory is violated. New analysis

needs to be developed to address the problem.

Supplementary Material

The online Supplementary Material contains a heuristic discussion on conditions for

the proposed estimator to be
√
N -consistent and asymptotic normal, a comparison

of our paper with several related papers with regression of Y on high-dimensional

Z = X and papers under stratified sampling settings, detailed proofs of theorems as

well as propositions, and details of the numerical implementation and application.
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