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SUMMARY

Consider the problem of estimating the mean of an outcome in the presence of missing data or
estimating population average treatment effects in causal inference. A doubly robust estimator
remains consistent if an outcome regression model or a propensity score model is correctly spec-
ified. We build on the nonparametric likelihood approach of Tan and propose new doubly robust
estimators. These estimators have desirable properties in efficiency if the propensity score model
is correctly specified, and in boundedness even if the inverse probability weights are highly vari-
able. We compare new and existing estimators in a simulation study and find that the robustified
likelihood estimators yield overall the smallest mean squared errors.

Some key word<Causal inference; Double robustness; Inverse weighting; Missing data; Nonparametric likelihood;
Propensity score.

1. INTRODUCTION

Consider the problem of estimating the mean of an outcome in the presence of missing data
under ignorability (Rubin, 1976). A related problem is to estimate population average treatment
effects under no unmeasured confounding in causal inference (Neyman, 1923; Rubin, 1974).
Such problems can be handled in two different ways. One approach is to model the mean of the
outcome given covariates, called the outcome regression function, and derive an estimator based
on the fitted values for observed and missing outcomes. The other approach is to model the prob-
ability of non-missingness given the covariates, called the propensity score (Rosenbaum & Ru-
bin, 1983), and derive an estimator through inverse probability weighting of observed outcomes.
Inverse-probability-weighted estimators are central to the semiparametric theory of estimation
with missing data (e.qg., Tsiatis, 2006; van der Laan & Robins, 2003).

The two approaches rely on different modelling assumptions and one does not necessarily
dominate the other (Tan, 2007). A doubly robust approach makes use of both the outcome re-
gression model and the propensity score model and derives an estimator that remains consistent
if either of the two models is correctly specified. A prototypical doubly robust estimator is the
augmented inverse-probability-weighted estimator of Robins et al. (1994). Recently, a number
of alternative doubly robust estimators have been proposed. See Kang & Schafer (2007) and
the related discussions. All existing doubly robust estimators are locally efficient: they attain the
semiparametric variance bound, and hence asymptotically equivalent to each other, if both the
propensity score model and the outcome regression model are correctly specified. Therefore, it
is important to compare doubly robust estimators in their statistical properties if only one of the
models is correctly specified or if both models are misspecified.



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

2 Z. TAN

We review various doubly robust estimators and highlight statistical criteria underlying their
construction. Some estimators are intrinsically efficient: if the propensity score model is correctly
specified, then each of them is asymptotically efficient among a class of augmented inverse-
probability-weighted estimators that use the same fitted outcome regression function (Tan, 2006,
2007). Some estimators are improved-locally efficient: if the propensity score model is correctly
specified, then they are asymptotically at least as efficient as the augmented inverse-probability-
weighted estimator that uses the true propensity score and an optimally fitted outcome regression
function (Rubin & van der Laan, 2008; Tan, 2008). Some estimators are population-bounded or
sample-bounded: they lie within the range of all possible values or that of observed values of
the outcome (Robins et al., 2007). The properties of boundedness rule out estimates outside the
population or sample range even when the inverse probability weights are highly variable.

We propose a robustification of the likelihood estimator of Tan (2006), named calibrated like-
lihood estimator, by calibrating the coefficients in a linear, extended propensity score model. The
estimator is computationally convenient, involving two steps of maximizing concave functions.
Moreover, the estimator is locally and intrinsically efficient and sample-bounded, and is further
improved-locally efficient if the outcome regression function is suitably estimated. No existing
doubly robust estimators achieve these four properties simultaneously.

We further derive a robustification of the likelihood estimator of Tan (2006), named aug-
mented likelihood estimator, by incorporating an augmentation term. This estimator satisfies
only a weaker form of boundedness than population and sample boundedness. We compare new
and existing estimators in a simulation study and find that the calibrated and augmented likeli-
hood estimators yield overall the smallest mean squared errors.

2. MISSING DATA PROBLEMS
2:1. Setup

Let X be a vector of covariates anlbe an outcome. The variablés are always observed,
butY may be missing. LeR be the non-missing indicator such thifat= 1 or 0 if Y is observed
or missing respectively. Throughout, assume that the missing data mechanism is ignorable, that
is, R andY are conditionally independent given (Rubin, 1976).

Suppose that an independent and identically distributed sampleuofts is available. The
observed data consist 0K, R;, R;Y;),7 = 1,...,n. Our objective is to estimate the population
meanu = E(Y'). Although this problem is simple to describe, it provides a basic setting for us
to investigate methods for handling missing data.

2-2. Models

There are two different ways of postulating dimension-reduction assumptions to obtain con-
sistent and asymptotically normal estimatorgo©ne approach is to specify a parametric model
for the outcome regression functien( X' ) = E(Y | X) in the form

EY [ X) =m(X;a) =¥{a"g(X)}, 1)

where U is an inverse link functiong(z) is a vector of known functions including the con-
stant 1, andx is a vector of unknown parameters. L& s be the maximum quasi-likelihood
estimator ofx or its variant. For concreteness, fix, s as the estimator that solves the equation
0= E[R{Y —m(X;a)}g(X)], whereE denotes sample average. g s = E{rmo.s(X)},
wheremo s(X) = m(X; dos). Under regularity conditions, if model (1) is correctly specified,
thenjio s is consistent and asymptotically normal, with asymptotic variance no greater than the
semiparametric variance bound, provided thay?) < oc.
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Biometrika style 3

The other approach is to specify a parametric model for the propensityscine= P(R =
1| X) inthe form

P(R=1|X)=mn(X;y)=1I{y"f(X)}, (2)

wherell is an inverse link functionf (x) is a vector of known functions, andis a vector of un-
known parameters. Lét,. be the maximum likelihood estimator gfand hence a solution to the
equation0 = £ [{R — m(X;v)}o(X;7) f(X)], whereo(X;v) = II'{~" f(X)}/[m(X;y){1 —
7(X;~)}] andIl’ is the derivative ofI. Two non-augmented inverse-probability-weighted esti-
mators are

where 7y (X) = 7(X;4w). Under regularity conditions, if model (2) is correctly speci-
fied, thenpw and fupwraio @re consistent and asymptotically normal, with asymptotic vari-
ances no smaller than the semiparametric variance bound, provide {that (X)} < oo and
E{Y?7171(X)} < co. See Tan (2007) for a comparison between the two approaches.

2-3. Existing estimators

The estimatofior is based on model (1) only, arigew and fipw ratio are based on model (2)
only. Alternatively, a range of estimators have been proposed by using both model (1) and model
(2) to gain efficiency and robustness. Many such estimators can be cast in the form

AT - [ RY R . S R .
p(r,m)=FE [fr(X) - {fr(X) - 1}m(X)} =F [m(X) + ﬁ(X){Y —m(X)},
wheren(X) andm(X) are fitted values of (X ) andm(X) respectively. See Kang & Schafer
(2007), Robins et al. (2007), and Tan (2006, 2007, 2008) for related discussions.
Consider the following estimators of with the same choicéy (X) for 7(X) but different
choices form(X). Robins et al. (1994) proposed the estimat@pw = (7w, oLs). Scharf-
stein et al. (1999) suggested the estimator

fios.ext = A{TwL s Ted(Tw )} = E{med(X; )},

where e X; 7) = med{ X; 4(7)} and &(7) is a solution t00 = E[R{Y — me(X;K)}
{771(X), g™ (X)}™] for the extended outcome regression MofEl | X) = men(X; k) =
U{r 7 HX) + k3g(X)} with & = (k1, k3)T. Kang & Schafer (2007) considered the estimator

fowes = {7, s (tml) } = E{mWLs(X§ ae)

where i s(X; %) = m{X;dws(7)} and Gwis(7) is a solution to0 = E[R7~1(X){Y —
m(X;a)}g(X)] and hence differs fromo.s in using weightz—1(X). Rubin & van der Laan
(2008) proposed two related estimators

flry = ﬂ{fTMmev(fTML)}, frv = ﬂ{fTMLyﬁle(fTML)}y

where 7igy(X;7) = m{X;ary(7)} and ary(7t) = argmin, E([RY/#(X) — {R/#(X) —
1}m(X;a)]?) for the first estimator andmgy(X;7) = m{X; arv(7)} and ary(7) =
argmin, E[{R/#(X)}{R/7(X) — 1}{Y —m(X;a)}?] for the second estimator. The estima-
tor ary (7) is a weighted least-squares estimator using wetght X ){#~!(X) — 1}. Our nota-
tion makes explicit the dependencydt(7), mws(7), ry(7), andmgy(7) On 7.

The choicery, (X) for 7(X) is derived under model (2), independently of model (1). A more
elaborate choice can be derived under an extended propensity score model with extra linear



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

4 Z. TAN
predictors depending ofi(X). Consider the model

_ _ Y — .Y T
P(R_l‘X)—ﬂ-ext(va)_H{Vl éMM+V2f(X)}’ (3)
where v = (v, 13)", 0(X) ={1,m(X)}", and ow (X) = o(X;9m.). Let &(7) be the

maximum likelihood estimator of and write e( X ;M) = mex{ X; 2(r1)}. Substitution of
Text(ToLs) for awL in fypw Yields the estimator of Rotnitzky & Robins (1995)pwext =
ﬂ{’ﬁ‘ext(mOLs), O} Form = moLs Or ’ﬁ’LWLs(’fFML), substitution Offrext(ﬁz) for ™ML in ,&(erL,m),
but not for that withinmn, yields the estimators

[LAPW,ext = ﬂ{frext(mms) ) mOLS}a s ext = ﬂ[ﬁext{mWLs(fTML ) }7 mWLs(fTML )] .

by Robins et al. in a 2008 technical report at Harvard University. In addition, they proposed

ﬂWLS,eth = ﬂ(ﬁext{mWLS(erL ) }7 mWLS [frext{mWLS(ﬁ'ML ) H )

through a further iteration fromM s ext

The targeted maximum likelihood approach of van der Laan & Rubin (2006, Sect>&3)
is closely related to the estimatqig, s ex:andiipw ex- With moLs andsy, as initial fitted values,
this approach leads to the estimators

frme = {7, o (vl ) } = E{mTML(X; me)}s fmew = {7 (Mocs), 0},
fitapw = ﬂ{fTTML (oLs), v (7ATML)}>

wheremmy (X; 7) is obtained by fittingFE (Y | X) = meu(X; k) With ko fixed ataoLs, and
7L (X;m) is obtained by fittingP(R = 1 | X) = mex(X; v) With v, fixed atdy. . The esti-
matorsipw,ext and fitipw are similar to the two likelihood estimators of Tan (2006). The first
estimator accommodates the variatiorygf whereas the second ignores that variation.

2:4. Comparison

Consider the following criteria for evaluating estimators.ofNote that improved local effi-
ciency implies local efficiency, and sample boundedness implies population boundedness.

(a) Double robustnesg: remains consistent if either model (1) or model (2) is correctly specified.
(b) Local efficiency:i attains the semiparametric variance bound, i.e., it is asymptotically equiv-
alent to the first order t&/[RY /7 (X) — {R/7(X) — 1}m(X)] if both model (1) and model

(2) are correctly specified. 3

(c) Improved local efficiency:ii is asymptotically at least as efficient as[RY/n(X)
—{R/m(X) — 1}m(X;a)] for arbitrary« if model (2) is correctly specified.

(d) Intrinsic efficiency: attains the minimum asymptotic variance among the class of estimators
E[RY /7w (X) — bT{R/7w.(X) — 1}0(X)] for arbitraryb; if model (2) is correctly speci-
fied, whereo(X) = {1, m(X)}™ andm(X) is the fitted value ofn(X') used ini. Therefore,

i is asymptotically at least as efficient @sw, fiipw ratior aNA L (TwL , 172).

(e) Population boundedness:lies within the range of all possible values¥f if model (1) or
model (2) or both are misspecified.

() Sample boundednesgilies within the range ofY; : R; = 1,4 =1,...,n}, if model (1) or
model (2) or both are misspecified.

The upper half of Table 1 presents a comparison of various estimators in Se@tiort&ms
of the foregoing criteria. See Sections 3—4 for a discussion of the likelihood and regression
estimators in the lower half of Table 1.
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Table 1.Theoretical comparison of estimators

ATaPw  ATML AAPW,ext
Aapw  AoLs ext AwLs RV fiRV AiPwext  AwLSext  AWLS ext2
DR v v v X v X v v
LE v v v v v v v v
IE X X X X X v v v
ILE X X X v v X X X
PB X v v X X X X v
SB X X X X X X X X
ALIK,OLS [REG,OLS [REG,0LS /LIK2,0LS HLIK2ZWLS  ALIK2,RV
DR X X v v v v
LE v v v v v v
IE v v v v v v
ILE X X X X X v
PB v X X v v v
SB v X X v v v

DR, LE, IE, ILE, PB, and SB correspond to criteria (a)—(f).

3. PROPOSED APPROACH
3:1. Summary

We extend the nonparametric likelihood approach of Tan (2006). The main contribution is to
obtain an estimator of, that is doubly robust, locally and intrinsically efficient, and sample-
bounded simultaneously. Moreover, our approach is flexible enough to allow different choices,
such asnoLs, mWLs(ﬁML), andﬁle(ﬁ'ML), for the fitted valuen. If 7 = ﬁ’LR\/(ﬁ'ML), then the
resulting estimator is further improved-locally efficient.

3-2.  Non-doubly-robust likelihood estimator

We describe the likelihood estimator of Tan (2006) in the current setup of missing data. The
nonparametric likelihood ofX;, R;, R;Y;),i =1,...,n,is

n

Ly x Ly = |[[n(Xs ) {1 = (X} 5| x| [ i(dXuvih) [ Godxih) |

i=1 it R;=1 1:R;=0

where( is the joint distribution of X, Y') andG) is the marginal distribution ok’. Maximizing
L, leads to the maximum likelihood estimatfy, . Recall thatn(z) is a fitted value ofn(z)
based on model (1) ant(z) = {1, m(x)}". Leth = (h], h3)" where

hi(z) = {1 — 7w (2)} (x), ho(x) = g:(l";’YML)-

We choose to ignore the fact thay and the marginal distribution of underG are identical,
and retain only the constrainfsh(z) dG; = [ h(z)dGy, i.e.,

/{1 ()} dGy = /{1 ~ #(z)} dGo,

/ {1 - #(2) () Gy = / {1 - #(x)}(z) dGo,

om

. 0 .
%(x;'YML)dGl :/a:(x;’YML)dGO-
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6 Z. TAN

See Kong et al. (2003) for a related formulation. The first two constraints respectively ensure that
the resulting estimator @f is consistent under correctly specified model (2) and locally efficient,
whereas the third constraint accounts for the variatiof@fsuch that the resulting estimator
is intrinsically efficient. Furthermore, we require tl@t be a probability measure supported on
{(X;,Y;): Ri=1,i=1,...,n} and henceg dG; = 1, andG, be a nonnegative measure (not
necessarily a probability) supported 6X; : R, =0, ¢ =1,...,n}. Maximizing L2 subject to
these constraints leads to the estimators

-1

G1({X:,Y:}) = wnA) if R; =1,
Gol({X = if R
it)=——F— IfR; =0,
o({Xi}) o)

where w(X; \) = L (X) + ATh(X), X = argmax £(}), and £(\) = E[Rlog{w(X;\)} +
(1 — R)log{l — w(X;\)}]. The function/(\) is finite and concave on the sgt : w(X;; A\) >
0if R; = 1andw(X;;\) < 1if R; =0,4=1,...,n}. Moreover,{()\) is strictly concave and
bounded from above, and hence has a unique maximum, if and only if the set

{N:ATA(X;) > 0if Ry = 1andA™h(X;) <0if R;=0,i=1,...,n}isempty.  (4)

See the Appendix for a proof. From our experienicee,an be computed effectively by using a
globally convergent optimization algorithm such as the R packaigé
Setting the gradient of{ \) to 0 shows thah is a solution to

= R—w(X;\) -
0= [wxmu—wuw»MXﬂ‘ ©)

By construction\ also satisfies

1_/m;_ﬁ B (®)
w(X;A)
The resulting estimator of is

A ~ RY
Mk /y 1 {w(X;/\)}

The estimatofi ik is structurally similar tQipwex Pased on the extended model (3). The value
can be interpreted as the maximum likelihood estimator ohder the linear, extended propen-
sity score modeP(R =1 | X) = w(X; ). However, there are important differences between
Aok and fupwexe First, w(X;; 5\) may not lie between 0 and 1 for d@lk=1,...,n. Itis only re-
quired thatv(X;; \) > 0if R; = 1andw(X;; \) < 1if R; = 0. Moreover, equation (6) automat-
ically holds, wherea®l{ R/7eq(X)} = 1 does not. By (6)w(X;; A) with R; = 1 are bounded
from below byn !, andji_k is sample-bounded. In contrast,(X;) with R; = 1 may be arbi-
trarily close to 0, angipwext iS NOt sample-bounded.

Tan (2006, Theorem 4) obtained an asymptotic expansigh,f assuming that model (2)
is correctly specified. Here, we provide a general asymptotic expansigngofallowing for
misspecification of model (1) and model (2). See Manski (1988) for related asymptotic theory
in misspecified models. Under regularity conditiohgonverges to a constait in probability
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289 with the expansion
290

. . R —w(X;\) - _

A= \=B'F ’ WX 1/2
2o st s ) o)
293 where
294 s [ ARG g
295 B=E [w2(X; o0 (X)] .
296
297 Moreover, a Taylor expansion @f x about\* yields
298 - RY At R-w(X;\) .

e — _OTR! ; ~1/2

0 pho E{w(X;A*>} crE [w(X;A*Hl —w(X;A*>}h(X)] Fopn ), )
301 where C' = E[{RY/w*(X; \*)}A(X)]. If model (2) is correctly specified, then* =0
302 and hence the expansion reducesiti = firec + 0p(n~'/2) With figee = E (1) — BTE(g)
o whereq) = RY /iy (X), £ = [{ R/ (X) — 167 (X), {R — fw (X) o (X) F7(X)]", B =

E(é€™), C = E(£7), and( = B~ is the least-squares estimator in the linear regressign of

382 oné. The estimatofires is locally and intrinsically efficient (Robins et al., 1995), but not doubly
307 robust. See Section%for a further discussion.
308 3.3. Doubly robust likelihood estimator
309 The estimatofi ik is sample-bounded and locally and intrinsically efficiental= Mgy (7w )
310 or mgy(TwL ), thenfi ik is further improved-locally efficient because it is asymptotically at least
311 as efficient agiry Or jiry, Which is improved-locally efficient. Howevet, \« is not doubly ro-
312 bust. It may be inconsistent if model (1) is correctly specified but model (2) is misspecified. We
313 propose a robustification gf_x such that it satisfies double robustness in addition to sample
314 boundedness and local and intrinsic efficiency.
gig We first discuss a simple version of our proposal. Consider the system of estimating equations
317 > R X

O0=F | ———1 X 8
318 Hw(X; by }“( )} | ®
319 - R—w(X;\) "
320 0= B | ) ©
322 which are equivalent to (5) except th@® — w)/{w(l —w)} is replaced by(R/w —1)/(1 —
323 7mL ) in the equations associated with = (1 — 7y ) 0. Let A be a solution to (8)—(9) subject to
324 the constraint that(X;; A\) > 0if R; =1(i =1,...,n)and let
o)

LIK = N .

327 w(X;A)
328 Note thats(X) includes the constant 1 and herf6éR/w(X; )} = 1 by (8). Thereforejfi i is
329 sample-bounded in a similar manner/ag is.
330 We derive asymptotic expansions fdrand /iy, allowing for misspecification of model (1)
331 and model (2), in parallel to those farand/i_x . Under regularity conditions) converges to a
332 constant\' in probability with the expansion
333 { n }
334 - - - —t — 1 0(X)

-1 w(X;AT -1/2
335 A B AT = BT E R(—w()g;)\f) iL + Op(n / )7
336 s f—wany 2 (X)
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8 Z. TAN

SR P (X)07(X) i A By (X)hg (X)
7 T
2

WA XADA—w(X AN
B (X)0T(X) g XA o (X) RS (X)

W2 (X AD{I—w(X; D22

) |

>+0p(n1/2). (10)

Moreover, a Taylor expansion gf x about)\' yields
R ~
~ 7 RY _ ATPT-1 & {w(X;)\T) o 1}U(X)
MLlK—E{w(X;)\T)} C'B E(

(X “
w(X-fT){l(i(u;?)g-)\T)}h2( )

If model (2) is correctly specified, thent =0 and hence the expansion reduces to

fiuk = fires + 0p(n 1/2) with MREG— ( ) — 5TE(§) WhereC [ROT(X) /7w (X), {R —

e (X) Yom (X) fT(X)]T, B = E(£CT), and 3= B'C. In this case,irec and jigec are

asymptotically equivalent to the first order and hence soiake and fi k. However, fige IS

akin to the doubly robust regression estimator of Tan (2006). These regression estimators, unlike

[irec, Satisfies double robustness in addition to local and intrinsic efficiency.

The estimatorg, x andji x are sample-bounded and locally and intrinsically efficient. How-
ever,fi ik, unlike ik, is further doubly robust. This difference follows from the general asymp-
totic expansions (7) fofi x and (10) forji k. The leading terms are structurally similar to
respectivelyjiree, Which is not doubly robust, angkes, Which is doubly robust. Alternatively,
fiLk 1S doubly robust because

5 R _ B
E{w<x;x>m<X)}—E{ (X)} (11)

by (8) and hencei i is identical toj{w(:; X),m} in the typical form of doubly robust esti-
mators. In contrastz{ Rin(X)/w(X;\)} = E{m(X)} does not necessarily hold fpr . We
regard) as a calibration of the maximum likelihood estimaioin the linear, extended propen-
sity score modeP(R =1 | X) = w(X; ) such that equation (11) holds.

So far, we seem to fulfil the objective of deriving an estimator that is doubly robust, locally
and intrinsically efficient, an~d sample-bounded. However, there remain subtle issues about the
existence and computation &f First, it is difficult to characterize conditions under which there
exists a solution to (8)—(9) subject to the constraint th@X’;; \) > 0if R, =1 (G =1,...,n).
Moreover, algorithms for solving nonlinear equations such as (8)—(9) may fail to locate a solu-
tion, much less all possible solutions, if any exists. It presents a further challenge to accommodate
the constraint on the domain af Finally, if indeed there exists no solution or multiple solutions,
it remains difficult to redefine or select\ among multiple solutions. These difficulties are ap-
plicable not only to (8)—(9), but to nonlinear estimating equations in general. See Small et al.
(2000) for a survey that mainly deals with multiple solutions.

We now discuss a more effective version of our proposal to address the foregoing issues.
Recall that\ is defined as a maximizer éf\). Under condition (4)¢()\) is strictly concave and
bounded from above and henkexists and is unique. Consider the following two-step estimator.

(@) Compute)\ = ()\{, )\T) partltloned according th = (hf, ﬁg)T.
(b) Compute)\stepz— ()\1 step2 )\T) Where/\l,stepz— argmax, ~1(\1) and

log{w(X; A1, A2)} — log{w(X; \)}
1 — i (X)

k(M) =FE |R —\To(X)
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The functionx;();) is finite and concave on the s€h; : w(X;; A1, Ao) > 0if Ry =1, i =
1,...,n}. Moreover, as shown in the Appendix; (A1) is strictly concave and bounded from
above, and hence has a uniqgue maximum, if and only if the set

M \TO(X;) > 0if Ry=1,i=1,...,n, andE{\To(X)} <0} isempty.  (12)

Like X in step (a),f\l,stepzin step (b) can be computed effectively by using a globally convergent
optimization algorithm such as the R packagest
Setting the gradient of; (\;) to 0 shows thah; sep2iS @ solution to

R .
{ ) 1}“““] ’ 49

which is equivalent to (8) with, evaluated ah,. In fact, we consider (13) as estimating equa-
tions and obtaink; (A1) as an objective function by integrating the right side of (13). This con-
struction is feasible because the matrix of the partial derivatives of the right side of (13) is sym-
metric and negative-semidefinite. In the degenerate case Wwheke) is removed fromi(X),

then\ consists of\; only and hence\ and\swepzare identical.

The resulting estimator gf is
- ~ RY
ke =B § ————— .
{ W(X§ AstepZ) }

The estimatorfi k., like ji, is sample-bounded and doubly robust due to, respectively,
E{R/w(X;Astepd} = 1 and E{Rin(X)/w(X; Asepd) } = E{7n(X)} by (13). Furthermore,
fiLke IS asymptotically equivalent to the first order gk and fi k if model (2) is correctly
specified, and hence is locally and intrinsically efficient. See the Appendix for an asymptotic
expansion ofi k., allowing for misspecification of model (1) and model (2).

The foregoing development allows a general choice of the fitted valu€). The estimator
fukz I1s doubly robust, locally and intrinsically efficient, and sample-bounded. Nevertheless, dif-
ferent choices ofn(X) lead to specific versions @f, k. that differ beyond the four properties.
Denote by/jLL|K2’o|_5, ﬂLIKZ,WLS: and llLIKZ,RV the versions OﬁLIKZ Corresponding ton = mOLs,
mwes(7m ), andmgy (7w ), @and similarly denote those @ ik, firec, @andfirec. The estimator
fLkz,ry, Unlike fipkz.ois and fipkawes, is further improved-locally efficient. See Table 1 for a
comparison of these estimators among other estimators.

0=F

4. EXTENSIONS AND COMPARISONS
4.1. Specification of(X)

The vectoro(X) is so far fixed ag1,72(X)}". However, it can be replaced throughout by a
general vector of known functions &f including the constant 1 as in Tan (2006). With this ex-
tension, ik andji ke still have asymptotic expansions in the current forms. The two estimators
are sample-bounded and intrinsically efficient. Furthermore, if

m(X) = bj 0(X) for some vectob,, (14)

then i is locally efficient, andi k. is doubly robust and locally efficient. Condition (14)
automatically holds fof)(X) = {1,m(X)}" with b; = (0,1)7.

Consider the case where model (1) is linear with identity iInkTheng(X) is an alternative
choice ofo(X) satisfying (14). For this choice, intrinsic efficiency implies improved local effi-
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ciency and hencgyx andji k. are improved-locally efficient. This result can also be seen from
the following relationship. Suppose that(X) is removed fromh(X) throughout. Therires

and jireg are identical tgiry and figy respectively, which are improved-locally efficient (Tan,
2008). The estimator, ik andji k. have increased asymptotic variances, but are still asymptot-
ically equivalent to the first order txec andjires if model (2) is correctly specified. Therefore,
the original estimators x andji k., are improved-locally efficient.

4.2. Estimation ofE'(X) andG;

The estimatorgx andii k. for u = E(Y') can be used for estimatirig( X ) with Y replaced
by X, and similarly for estimating the expectations of functionsXofThe resulting estimators
have similar properties to those @fix andi k..

Suppose thak is contained irb(X') by specification. If model (2) is correctly specified, then
E{RX/w(X;\)} is asymptotically at least as efficient &RX /mw (X) — {R/7w (X) —
11X] = E(X) by intrinsic efficiency, and hence asymptotically equivalent to the first order to
E(X). The estimato={ RX /w(X; Aseps) }» in contrast withE{RX /w(X; \)}, is identical to
E(X) by (13), whether or not model (2) is correctly specified.

Estimation of E(Y'), E(X), and the expectations of functions @X,Y") is unified in esti-
mation of G; from the distributional perspective of Tan (2006). I@}Lstepz be the probability
measure supported diiX;,Y;) : R; =1, i =1,...,n} such thatifR; = 1 then

Tl_l

Gl,stepZ({Xu}/z}) w(XZ-; )\Smpz)‘

Then él and élvstepz are both estimators aff;, supported on the completely observed data.
However,G' sepe Satisfies| 0(x) dGy sepz= E{0(X)}, i.€., the weighted average 6fX) un-
derél7step2is exactly matched to the overall sample average(df ).

We compare our approach with the empirical likelihood approach of Qin & Zhang (2003).
Their approach is to maximiZg;. . _; G1({ X;, Y;}) subject to the constraints tha is a prob-
ability measure supported of{X;,Y;): R; = 1,7 =1,...,n} and [ a(z) dG; = E{a(X)},
whered(z) = {7 (z), m(z)}T. The maximization leads to the estimator thakjf= 1 then

-1
™

Goz({Xi,Yi}) = 1+ A\ la(X;) — B{a(X)}]’

where ny =37 | R;, Agz=argmax, foz(M1) and loz(\) = E{Rlog(1 + \f[a(X;) —
E{a(X)}])}. The estimatofiq; = [y dGq; is sample-bounded due fodGo, = 1, and doubly
robust and locally efficient due tpri(x) dGoz = E{m(X)}. However,iqo; is not intrinsically

or improved-locally efficient, even in the special case whe¥) is known and substituted for
ML (X) andmR\/(ﬁ'ML) or Tth(ﬁ'ML) is used formn.

4.3.  Augmentation ofi ik
The estimatofi k. is derived as a robustification @f« to realize double robustness and re-
tain sample boundedness and local and intrinsic efficiency. Our method is to calibrate the estima-
tion of A. An alternative method for robustification is to augmgnk with the additional term
E[{R/w(X;X) — 1}m(X)], in a similar manner to augmentingew ext t0 fiapwext Dy RObINs
et al. in their 2008 technical report. The resulting estimator is doubly robust and locally and
intrinsically efficient, but not sample-bounded.
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481 Recall that\ = A(7) depends on and write &(X;7) = w{X; A(rh)}. Substitution of
482 & () for #eq() in various estimators in Section®leads to
483
484 Dapwiik = ﬂ{@(mOLs),mOLs}, fwis, ik = ﬂ[@{mWLSO%ML)}vmWLS(ﬁML)]v
485 fws like = ﬂ(d){mWLS(ﬁ'ML)}a mWLS[d){mWLS(ﬁ'ML)H)) HRviik = ﬂ[d){mRV(ﬁ'ML)}v mRV(ﬁ'ML)]-
486
487 These estimators are similar to their counterparts in Secti®imn2terms of the six properties
488 in Table 1. The estimatqi{w(m), 7} is not population-bounded or sample-bounded, whereas
489 fwis,ikz 1S population-bounded. Nevertheleggcw (1), m} is bounded in the absolute value by
490 A=max{|m(X;) [i=1,...,n} +max{| Vi —m(X;) || R; =1,i=1,...,n}, duetonor-
491 malization (6). In contrasfi{ 7ex(m), 7} may lie outside this range, because such a normaliza-
492 tion does not hold fofre.(X) as discussed in Sectior23
493 Kang & Schafer (2007) and Robins et al. (2007) considered a modificatigiirofin) by
494 deliberately normalizing the weights, that is,
495 N R - RY R ~
ratio( 7, 1) = B E| o — = [m(X) - E{m(X

a0 sl ) = B b B (25 - 5 ) = B0

. - R - [ R
498 :E{m(X)}—i-El{A }E { {Y—m(X)}}
499 m(X) 7(X)
500 The estimatofiraio{ Text(112), 72} is bounded in the absolute value By Moreover, it is similar
501 to i{7ex(m), m} anda{w (1), m} in terms of the six properties in Table 1. These estimators,
02 two based ori, and one based abh, are asymptotically equivalent to each other if model (2) is
282 correctly specified, but may differ in various ways otherwise.
505 4.4, Bounded robustification gfpwex
506 The estimatofiapwex iS doubly robust but not sample-bounded. An alternative robustification
507 of fupwextCaN be derived such that it is doubly robust and sample-bounded in a similar manner as
08 [z is derived fromyii k. Our method is to calibrate estimationofn the extended model (3).
2(1)8 For simplicity, fix IT(z) = expit(z), i.e., {1 + exp(—=z)}~!. Theno(X;~v) =1 free ofv, and
11 Text(X ; ) reduces tdl{v{o(X)/aw (X) +v3 f(X)}.
512 Recall thaty = (77, 25 )" is the maximum likelihood estimator efand hence a solution to
513 0= E[{R_Wext(XW)}f(X)]a
515 0=F [{R — Text( X5 V) } = ] : (15)
516 T (X)
gi; Let Dsiepa = (P stepz 72 )" V1 stepz= argmax, 71(v1), and
519 1) = B |~ Riw (X) exp { —7 250 a0 L - (0 - mpa)
520 v (X))
521 . . . . . . e
522 by integrating the right side of (17) below. The function(z ), unlike /(\) andk1(\1), is finite
523 and concave everywhere. Moreovet,(v1) is strictly concave and bounded from above, and
524 hence has a uniqgue maximum, if and only if the set
2;2 {v1 :Vf0(X;) > 0if Ry=1,i=1,...,n, andE{(1 — R)v70(X)} <0} isempty.  (16)
527 See the Appendix for a proof. The existence condition (16)fqf..is more demanding than

528 (12) for XLSmpzin that (16) implies (12), but not necessarily vice versa. Setting the gradient of
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J1(v1) to 0 shows thai; .ep.is a solution to

0= |{ oy~ o) an)

which is equivalent to (15) witfiR — 7ex) replaced by(R/mex — 1)7im. @andr, evaluated ab;.
The resulting estimator qi IS fupwextz = E{RY/wext(X ; Ustep2) }- This estimator, likei k., is
doubly robust, locally and intrinsically efficient, and sample-bounded.

We compareipwex2 With the bounded, doubly robust estimator of Robins et al. (2007, Sec-
tion 4-1.2). Consider the extended propensity score madgks r(X; x,y) = H(x[n(X) —
E{m(X)}] + 7" f(X)). Let ¥ = x(7n) be a solution to

~ R A o
v=E <7Text,RSLR(X; X mL) [ (X) - E{m(X)H> )

and  write Teqrstr( X5 M) = Texrstr{ X; X (1), AmL ). The  estimator fupwexrisr= flratio
{TextrsLr(M), 0} is sample-bounded. Moreover, it is identical/tQio{ TextrsLrR(112), 72} by the
construction ofy and hence is doubly robust and locally efficient. However, it is not intrinsi-
cally or improved-locally efficient, even in the case whéyg is replaced by the true value and
m(X) — E{m(X)} in Teqrstd X X, 7) is replaced bym(X) — E{m(X)}]/m(X).

4.5. Regression estimators

The estimatorgirec and fireg are called regression estimators (Tan, 2006, 2007), with con-
nection to survey sampling (e.g., Cochran, 1977) and Monte Carlo integration (e.g., Hammers-
ley & Handscomb, 1964). The idea is to exploit the fact that if model (2) is correctly specified,
then has mean and¢ has mean 0 asymptotically. The estimaf@k attains the minimum
asymptotic variance among the class of estimafofg) — b E(¢) for arbitrary b. Moreover,
firec IS asymptotically equivalent to the first order f@ec because boths and ﬂ converge
B = E~1(¢€7)E(€n) in probability. Note thatF(£,) = 0 and hencel(77) — b™ E(€) reduces
to E(7) — bTE(£1), whereb = (b7, b%)™ andé = (£7, £F)™ according toh = (AT, h)".

The estimatorsires and firec are no longer asymptotically equivalent if model (2) is
misspecified. In factjigec is doubly robust whereagrec is not. The estimatofires IS
akin to the doubly robust regression estimator of Tan (2006), in whjicis defined as
{RO™(X) /7w (X), Rom. (X) fT(X)}™. A benefit of using this version of is that the result-
ing matrix B is symmetric and negative-semidefinite. Moreovef if: \"h(X;) = 0if R; =
1,7i=1,...,n}is empty, then3 is negative-definite. This symmetrization tends to stabilize the
inversion of B in 3 = B~1C and hence improve the finite-sample behaviofigfs.

A similar symmetrization can be applied to estimating equations (8)—(9). Consider the follow-
ing estimating equations in place of (9)

R ha(X)
{w<X;A> - 1} i —;ML(X)] - (18)

The matrix of the partial derivatives of the right sides of (8) and (18) is symmetric and negative-
semidefinite. IR : ATh(X;) =0if R; = 1,7 =1,...,n} isempty, then the matrix is negative-
definite. In fact, (8) and (18) are jointly equivalent to setting to O the gradient(®f =
E([Rlog{w(X;\)} — ATh(X)]/{1 — 7w (X)}), similarly as (13) is obtained fromy (\;). The
functionx () has similar properties of concavity and boundedness to thosg df). Therefore,

it is numerically convenient to redefimeas a maximizer ta:(\) or equivalently a solution to

0=F
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577 (8) and (18) subject to the constraint thatX;; \) > 0if R; =1 (i =1,...,n). The resulting
578 estimatorji k is comparable tgi . in terms of the six properties in Table 1.

579 A limitation of the modified estimatofi x_as compared withi k. is that it is difficult to
580 generalizei k. while retaining the structure dfto the setup of causal inference with non-binary,
581 discrete treatments. See Sectio# for a further discussion.

582

583

584 5. CAUSAL INFERENCE

585 5.1. Setup

586 We now turn to causal inference in the framework of potential outcomes (Neyman, 1923;
587 Rubin, 1974). LetX be a vector of covariates arid be an outcome as before. L&tbe a
588 treatment variable taking values ih = {0,1,...,J — 1} with J > 2, where 0 denotes the
589 null treatment or placebo. For ea¢le 7, let Y; be the potential outcome that would be ob-
590 served under treatment We make the consistency assumption tHat Y; if T'=t, and the
591 no-confounding assumption that for each 7', R, andY; are conditionally independent given
592 X, whereR; = 1{T = t}. Throughout1{-} denotes the indicator function.

593 The observed data consist of independent and identically distribited;, Y;),i = 1,...,n.
594 Our objective is to estimate the population mean= E(Y;) for ¢t € 7. The differenceu; — o
595 is called the average causal effect of treatntefio a certain extent, this problem can be handled
596 asJ separate problems of estimatipg from the data(X;, R;;, R:;Y:i), i =1,...,n, as in
597 Sections 2—4. However, the estimators;gfobtained in this way are not jointly intrinsically
ggg efficient and hence those pf — 1o may be inefficient even marginally.

600 5-2. Models and existing estimators

28; Consider a parametric model for(t, X) = E(Y | T = ¢, X) in the form

603 EY|T=t,X)=m(t,X;a) (teT), (29)
604

wherem(t, z; ) is a known function and is a vector of unknown parameters. To focus on

605 main ideas, assume that(t, X'; o) = ¥{a/ g(X)}, wherea, is a vector of unknown parameters
606 anda = (ag,...,a%_;)". This specification of (19) is separable in the senseth@t X; o)
28; depends o only througho,. By abuse of notation, treat (¢, X; o) asm(t, X; o). Letdy ois
609 be a solution t®) = E[R{Y — m(t, X; o) }g(X)] and writerng s(t, X) = m(t, X; &4 oLs)-
610 Consider a parametric model fo(t, X) = P(T =t | X) in the form
o11 P(T=t|X)=n(t,X;7) (teT), (20)
613 wherer (¢, x; ) is a known function and is a vector of unknown parameters. gl be the
614 maximum likelihood estimator of and writeiry (¢, X) = 7 (¢, X; 9L ). A convenient specifi-
615 cation of (20) is the multinomial logit model
616 exp{y; f(X)}

m(t, X;7) = 7 (21)
o >jer exp{7] f(X)}
619 wherey = (v5,771,...,77_1)" with 49 = 0. In this case, the score equations fg are0 =
620 E{R; — n(t, X;y)}f(X)]fort =1,...,J — 1.
621 To estimate.,, the estimators in Section®can be adopted. Replagér, i) by
622

- [ RY R
623 e (701 = Ul t 2
,u(Tr,m)—E[A {A 1}m(t7X):|v

624 : w(t,X) 7t X)
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625 wherer (¢, X') andm(t, X ) are estimators of (¢, X' ) andm(t, X) respectively. Various choices

626 of the two estimators are available. The estimatqy s(¢, X ) is a simple choice ofi(t, X),

627 andmy (¢, X) is a simple choice ofi(¢, X'). Moreover, there are iterative choicesrft, X)

628 andﬁ'(t, X) Let "I’hext(t, X; 7AT) = mext{t, X; :‘%t(ﬁ')}, ThWLs(t, X; ﬁ') = m{t, X; dt7w|_s(ﬁ')}, and

629 mev(t, X;7) = m{t, X; & gy(7) }, Whereky(7), duwis(7), andé; ry(7) are obtained by sub-

630 stituting Ry, 7 (t, X ), andm(t, X; o) for R, #(X), andm(X; ) throughout in&(7), dw.s(7),

631 andagy (7). Construction of an extension fQ.(7i») seems difficult for a general specification of

632 model (20) withJ > 2. Nevertheless, the task is straightforward if the multinomial logit specifi-

633 cation (21) is used. Consider the model

634

635 1 0(j, X)
P(T=t]|X)=mexlt,X;v) = ex v vo, f(X) §, 22

gg? ( ‘ ) e t( ) C(X,I/) p j;— 1t,j L (ij) + th( ) ( )

638

639 where v = (v],v5)", vy is the vector ofvy,; for t,j € T with v9; =0 for j € 7 and

640 V10 = V11,0 for t # 0, v, is the vector ofy, for t € 7 with 1oy = 0, 0(j, X) = {1,m(j, X)}",

641 andC(X;v) is determined by , . mex(t, X; ) = 1. Letd(1n) be the maximum likelihood es-

642 timator of v and writere(t, X; ) = mex{t, X; 0(11) }. The foregoing choices of.(t, X)) and

643 7(t, X) can be employed in similar combinations to thoseidfX) and#(X) in Section 23.

644 Label the resulting estimators pf accordingly.

645 For eacht € 7, the marginal behavior gf; can be evaluated by the criteria in Sectio#.2

646 However, consider the following criteria for the joint behavior(g§, /i1, ..., is—1). We say

647 that a vector-valued gstimatéf is more efficient thad, if the asymptotic variance matrix of

648 is smaller than that o, in the order on positive-definite matrices.

649

650 (a) Joint double robustnessjio, fi1, - - -, ft7—1) remains consistent if either model (19) or model

651 (20) is correctly specified.

652 (b) Joint local efficiency: (fo, f11, - - ., f17—1) attains the semiparametric variance bound if both

653 model (19) and model (20) are correctly specified.

654 (c) Jointimproved local efficiency( g, /i1, - . ., fi.7—1) IS atleast as efficient dgio (o), 11 (1),

655 ..., fiy_1(as_1)} if model (20) is correctly specified, whefg (o) = E[R;Y/x(t, X) —

656 {R¢/m(t,X) — 1}m(t, X; ay)] for a; a vector of arbitrary constants € 7).

657 (d) Joint intrinsic efficiency: (fi, f1,- .., tj—1) IS at least as efficient a§fio(bo), f11(b1),

658 ..., fiy_1(by_1)} if model (20) is correctly specified, whefe(b;) = E[R;Y /7w (t, X) —

659 bf{Ry/7w(t, X) — 1}0(t, X)] for b, a vector of arbitrary constants € 7).

660 (e) Joint population boundednesg; is population-bounded for ea¢te 7.

661 (H Joint sample boundednesg; is sample-bounded for eatke 7.

662

663 Joint double robustness, local efficiency, or population or sample boundedness is equivalent to

664 the fact thatii; satisfies the corresponding property for eaeh7 . However, joint intrinsic or

665 improved local efficiency is respectively more stringent than the fact that for each, /i,

666 satisfies intrinsic or improved local efficiency.

667 The comparison in Table 1 remains applicable except for one correction, if the estimators are

668 replaced by the joint estimators @fo, 11, - - ., 1.7—1) and the properties are replaced by those on

669 the joint behavior. See Section$8554 for a description of the likelihood and regression estima-

670 tors. The correction is that none of the joint estimators satisfies joint improved local efficiency,

671 although Table 1 is still valid regarding whether or not the estimatogs sétisfy improved local

672 efficiency marginally. See Tan (2008, Section 3) for a further discussion.
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Note that(/i; pwex)tc7 Satisfies joint intrinsic efficiency becauséj, X)/wm (j, X ), j € 7T,
are simultaneously included as extra linear predictorsdigfr (¢, X)/m(0, X)} for eacht # 0
in model (22). For fixed # 0, if model (22) were specified such tHag{= (¢, X)/7(0, X)} =
vy f(X) if t #0or j, orvy; 05, X)/fa (J, X) + vg; f(X) if t = j, thenji; pwex would sat-
isfy intrinsic efficiency marginally, bufi: ipwext):c7 Would not satisfy joint intrinsic efficiency.
See Tan (2007, Section 3) for a related discussion.

5-3.  Non-doubly-robust likelihood estimator

We present the likelihood estimator of Tan (2006) in the setup of causal inference, with the
extension to accommodate discrete, binary or non-binary, treatments. See a 2007 Rutgers Uni-
versity technical report by Tan for a further extension to deal with marginal and nested structural
models. The nonparametric likelihood ©f;, 7;,Y;),i =1,...,n,is

Ly x Ly = H (T3, Xisy) x HGTi({Xia}/i})a

whereG, is the joint distribution of X, Y;), t € 7. Maximizing L; leads to the maximum like-
lihood estimatory,. . Recall thatn(¢, x) is an estimator ofn(¢, z) based on model (19) and
v(t,x) = {1,m(t x)}7. Leth = (AT, h3)" andhy = (hiy, hiy, ..., hi ; ;)" where

- . . o . - on .

hlj(t’x) = [1{t:J}_WML(t7:p)]U(])x) (] 67)5 hg(t,.ﬁﬂ) = 67,7(75733;7ML)'
By construction,) ", h h(t,x) =0 because ., 7w (t, ) = 1. We choose to ignore the fact
that Gy, t € 7, induce the same marginal distribution &f, and retain only the constraints

Sor [ h(t,2)dG, =0, ie.,

O—Z/l{t—]}—mv”_(t x)|dGy (j€T),

teT

0= [t =3} - At inlia) 4Gy (€ )
teT

0= t$ ML th
ME

Furthermore, we require thét; be a probability measure supported{diX;,Y;) : T, = ¢, i =
1,...,n}and hence dG; = 1, t € 7. Maximizing L, subject to these constraints leads to the
estimators that if; = ¢ then

’I’L_1

w(t, XZ‘; X) ’
where w(t, X; \) = (£, X) + ATh(t, X), A= argmax £()\), and £(\) = E[log{w(T, X;
A)}]. The functionf(\) is finite and concave on the sk : w(7;, X;;\) >0,i=1...,n}.
Moreover,/()) is strictly concave and bounded from above, and hence has a unique maximum,
ifand only if {\ : ATh(T};, X;) >0, i = 1...,n} is empty. This proposition follows in a similar
manner as that concernlrdgk) and condltlon (4) in Section-2.

The estlmatom{?t, t € T, are similar to(z; in Section 32. If J = 2, 7ime (1, X) is identified
asiw (X), hio is removed inh, and the constrainf dG, = 1 is cancelled, ther; reduces to
exactlyG in Section 32. For causal inferencéy, ¢ € T, are equally of interest and constrained

Gt({Xi,Y;}) =
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721 as probability measures. In contrast, oﬁ?y, but not@o, is of interest and constrained as a
722 probability measure in the missing data setup.
723 Setting the gradient of(\) to 0 shows thah is a solution to
724
725 = | T, X)
— 2
726 0 E{w(T,X;)\)}’ (23)
727 ) R
728 or equivalently0 = »", - [ h(t, z) dG;. The resulting estimator ¢f; is
729
730 . A - RY
= dGy =E{ ———F /.
731 it LIk /Z/t t {w(T, X:3) }
732 X
733 We derive the following asymptotic expansions foand/i. ik , allowing for misspecification of
734 model (19) and model (20), similarly as in Sectlol 3Under regularity conditions, converges
735 to a constant\* with the expansion\ — \* = B~LE{h(T, X)/w(T, X; \*)} + 0,(n~/?).
736 Moreover,ji;  x has the expansion
737 R )
738 . = RY rrpetm ) MTLX ~1/2
—F{—— V- CIBlES ——
739 He LK {w(t,X;)\*)} Cr ST, (Her ),
740 . ~ A . ~
741 where B = E{h(T, X)h"(T, X)/w*(T, X; \*)} and C; = E{R;Y/w?(T, X; \*)}. If model
742 (20) is correctly specified, thel\* =0 and hencej, x is asymptotically equivalent
743 to the first order tojisrec = E(7) — CFB 'E(E), where iy = R;Y /7w (T, X), €=
744 (T, X) /7w (T, X), B = E(§7), andCy = E(&).
745
746 5-4. Doubly robust likelihood estimator
747 The estimatorji; x is sample-bounded and locally and intrinsically efficient marginally.
748 Moreover,(fio . , fi1 Lk, - - - » 1,0k ) Satisfies joint intrinsic efficiency. However, i is not
749 doubly robust. We propose a robustficationipf x such that the resulting estimator of satis-
750 fies double robustness in addition to sample boundedness and local and intrinsic efficiency, and
751 the joint estimator satisfies joint intrinsic efficiency.
752 For our derivation, rewrité(t, z) as
753 . . .
754 h(tvx) = h(tvx) _erL(tax)Zh(jvx)7 (24)
755 jeT
;gs whereh = (AT, h3)", hy is defined the same ds, but 7, is defined agi; with hy;(t,z) re-
758 placed byfilj (t,z) =1{t = j}v(j,z),j € T.Instead of (23), consider the system of estimating
759 equations
760 B { Z }
761 0=F h(t, X) (25)
762 (T, X )\
7 . ~ ~ o
722 ie,0=E[{R/w(T,X;)) - 1}0(t, X)], t € T, and0 = E{h(T’, X)/w(T, X; A)}. In retro-
765 spect, the vector of estimating functiohsT’, X)/w(T, X; \) — Ztg h(t, X) in (25) equals
766 WT,X)/w(T, X;\) in (23) left- multlplled by the matrixl — >, A(T, X)AT, wherel is
767 the appropriate identity matrix. Lex be a solution to (25) subject to the constraint that

768 w(Ty, Xi;A) > 0@ =1,...,n) and letii, k. = E{R;Y/w(T, X;\)}.



Biometrika style 17

769 We derive the following asymptotic expansions foand fit Lk » allowing for misspecifica-
770 tion of model (19) and model (20), similarly as in Sectio.3Under regularity conditions,
771 A converges to a constanf with the expansion\ — A = BT 1 E{A(T, X) /w(T, X; A1) —
;;:2% e W, X)} + 0,(n~/?). Moreover,ji, .« has the expansion
774 - RYY OO
ik =FE{ —————V —CFB™'E (T, X) —1/2
775 [t Lk {w(t,X;/\T)} h { T, X )\T Z } op(n~'7),
776
i where B = E{h(T, X)h"™(T, X) /w?(T, X; \T)}. If model (20) is correctly specified, then
;;g A=0 and hencei, x is asymptotically equivalent to the first order figrec = E(m)
280 CIB™'E(), where{ = (T, X) /7w (T, X) and B = E(£C"). The estimatorgi; gec and
781 fit rec are similar tojirec and firec respectively. Both estimators are locally and intrinsically
782 efficient, butfi; rec is doubly robust whereg# gec is not.
783 The estimatori;  k is similar to /i« , satisfying double robustness, local and intrinsic effi-
784 ciency, and sample boundedness but suffering from subtle limitations. As discussed in Section
785 3.3, it is difficult to study the existence of in theory and to computﬁ effectively in practice.
786 Alternatively, consider the following two-step estimator. Rewh;ieas(hft,hT( )) wherehl(t)
787 consists of the elements bf excepth;.
788 . . . .
789 (a) ComputeX = ( 1t,/\T( A1)T, partitioned according th = (hlt,hl(t) h3)T.
790 (b) ComputeAstgpz— ( 1t step2 Xf(t), AT, Where5\1t7step2: argmax,, x1(A1¢) and
791
792 - | log{w(t, X5 Me, Adiry, A2) } — log{w(t, X5 A)}
Mt) = F | Ry —A

793 K1(A1e) 1= fw (1. X) 10(t, X)
794
;gg The function k(A1) is finite and concave on the se€thi;: w(t, X;; A1ty Ae) ;\2) >
297 0ifT; =t,i=1,...,n}. Moreover, x1(\;) is strictly concave and bounded from above,
208 and hence has a unique maximum, if and only {X;; : \[,0(¢t,X;) > 0if T; =t, i =

1,...,n, andE{\],0(t, X)} < 0} is empty. This proposition follows in a similar manner as
799 S ) :
800 that concernlnggl(/\l) and condition (12) in Section3.
501 Setting the gradient of; (A1) to 0 shows thah; sep2iS @ solution to
802 ~ R,
803 0=F - — —1,0(t,X)] . (26)
804 W(t, X5 Aty Aypys A2)
805 The resulting estimator gf; is
806
807 i P { RY }
808 tLIK2 = = (-
810 The estimatorfi; k2, like fikz, is sample-bounded and doubly robust due to equation (26).
811 Furthermore,fi; k. IS asymptotically equivalent to the first order fo,x and ji; i if
812 model (20) is correctly specified. Therefoyg, k. satisfies local and intrinsic efficiency and
813 (fio.uikz s 1Lz, - - - a—1,uk2 ) Satisfies joint intrinsic efficiency. The foregoing results are valid
814 for a general choice afi(¢, X). For the choicen(t, X)) = mgry(t, X), the resulting estimator
815 fit. Lz Satisfies improved local efficiency marginally, althoug@h ik, fi1,ukzs - - - 5 fl—1,LKk2)

816 does not satisfy joint improved local efficiency.
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In the case o/ = 2, we relatefi; reg to the doubly robust regression estimator of Tan (2006)
and then derive a robustification pf |« such thati; x and the resulting estimator are sim-
ilarly related. First, the regression estimator /gf in Tan (2006) isE(7),) — CFBf ~*E(£),
where B; = E(£(f), and (o or ¢, is defined as¢ with h(t,x) replaced byh()(t,z) =
—1{t = 0} /7w (0,2)1(0,z) or A (t, ) = 1{t = 1}/{1 — #w.(1,2)}h(1,z). The functions
A and AV, like 7, are mapped td by (24). A benefit of usmgt is that B, is symmet-
ric and negatlve -semidefinite. {f\ : \Th(t, X;) = 0if T, = ¢, i = 1,...,n} is empty, thenB,
is negative-definite. Second, substitution/6¥ for 7 in (25) yieIdsO = E[{Rl/w(l,X; A) —
1}h(1, X) /{1 — 7w (1, X)}], which is equivalent to setting to O the gradient i6f)()\) =
E([Rylog{w(1,X;)\)} — /\Tﬁ(l X)]/{l — v (1, X)}). This system of estimating equations
is similar to (8) and (18) and(M () is similar tos(\) in Section 45. Therefore, it is numeri-

cally convenient to redefink as a maximizer t@s<1>()\). The modified estimatqi; .k provides
a one-step alternative @ | k., which involves two steps of maximization. Substitutiora?
for /1in (25) leads to similar results. However, this modificatiopofik is not feasible fo > 2.

In general, there exists no function lik€) andi(!) that is mapped té by (24) and of the form
1{t = j}¢(x) for fixed j € T and¢(x) a vector of functions of.

6. SIMULATION STUDY

To compare estimators, we conduct a simulation study with the same design as in
Kang & Schafer (2007). LetX = (X3, X2, X3,X4)", Y =210+ 274X, + 137X, +
137X3+ 137X, +¢, and T = 1{U < expit(—X; + 0-5X5 — 0-25X3 — 0-1X,)}, where
(X1, X9, X3,Xy,e,U) are mutually independent,(X;, X2, X3, X4,¢) are marginally
normally distributed with mean 0 and variance 1, abdis uniformly distributed on
(O, 1). Let W = (Wl, WQ, Wg, W4)T, W1 = eXp(O'SXl), W2 = Xz/{l + eXp(Xl)} + 10,

W3 = (0-04X; X3 + 0-6)3, and W, = (X5 + X4 + 20)2. Consider the following models: (a)
EY|T=t,X)=ay+al,Xfort=0,1;0) E(Y | T=1X) = ay +af,Wfort =0, 1;
(©P(T=1|X)=-expittyo+77X); (d) P(T =1 | X) = expit(yo + v{ W). Models (a) and
(c) are correctly specified, whereas (b) and (d) are misspecified.

We first investigate 22 estimators @f in the missing data setup. The observed data consist of
realizations of X, 7, TY"). The 22 estimators are labelled as follows:

(1-3) fuik,oLs, fires,oLs fires,oLs (Sections 2 and 45);

(4-7) frapw (ratio), fiors.exs fiwis, frv (Section 23);

(8—12)[upw,ex: (ratio), fupw,extz fLaipw,ext (ratio), fiw s ext (ratio), fiw s extz (Sections 2B and 44);
(13_15)ﬂTIPW (ratio),/lTML, ﬂTAIPW (ratiO) (SeCtion 23),

(16—22)ftapw,ik s fiLik2,0Lss fwLs ks AwLs ikes fiLike,wis, Bryiks Bukzry (Sections 8B and 43).

The estimatofirec oLsiS taken as the doubly robust regression estimator of Tan (2006). The six
estimators marked by ratio in brackets are defined in the form.ef 7, 712), instead ofu(7, ).

Figure 1 presents the boxplots of 13 estimators from 5000 Monte Carlo samples of=size
1000. The realizations of each estimator are censored within the rangex$, and the number
of realizations that lie outside the range are indicated next to the lower and upper limits of
y-axis. The 13 estimators perform differently mainly in the cases where the propensity score
model is correct but the outcome regression model is misspecified and where both models are
misspecified. The upper half of Table 2 presents the ratios of mean squared errors of the 13
estimators again estimator 22 in these two cases for200 and 1000.
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Table 2.Ratios of mean squared errors

Estimator 1 2 3 6 7 10 11 12 14 15 17 20 22

Estimators ofu; in missing data setup
C-PS&M-OR 123 128 120 132 107 139 125 124 151 135 124 117 100
121 2121 120 136 2107 175 133 120 180 149 121 113 100
M-PS&M-OR 132 150 134 162 112 187 131 130 132 112 127 1220 100
110 2131 2127 282 124 486 178 199 121 104 131 127 100

Estimators ofu1 — po in causal inference setup
C-PS&M-OR 197 179 276 450 185 500 327 316 198 181 265 187 100
380 358 405 908 233 117 542 417 134 130 47 258 100
M-PS&M-OR 177 177 251 275 146 239 187 182 291 242 188 174 100
202 222 733 399 177 342 208 216 397 372 207 187 100

C-PS (or M-PS): correct (or misspecified) propensity score model; M-OR: misspecified outcome regression model;
Each cell gives the ratios of mean squared errors.fer 200 (upper) and» = 1000 (lower).

Among the estimators not shown, estimator 16 performs similarly as 17, estimators 18-19
similarly as 20, and estimator 21 similarly as 22. Estimators 4-5 perform overall poorly as in
Kang & Schafer (2007, Tables 5 and 8). Estimator 8 yields outlying values in all the four cases
whether the outcome regression model and the propensity score model are correct or misspeci-
fied. Estimators 9 and 13 improve upon estimator 8 when the propensity score model is correct,
but still perform poorly when the propensity score model is misspecified.

The robustified likelihood estimators 16—22 provide the best performances for all the settings
under study. Among these seven estimators, estimators 21-22 perform noticeably better than
estimators 16—20 due to smaller variances when the propensity score model is correct but the
outcome regression model is misspecified and due to smaller biases when both models are mis-
specified. The variance reduction in the first case reflects the result that estimators 21-22, but not
estimators 16-20, are improved-locally efficient.

Estimators 1-3 have mean squared errors in the range of those of estimators 16—20 for all the
settings. However, estimator 1 is not doubly robust and hence the fact that it is nearly unbiased
when the outcome regression model is correct but the propensity score model is misspecified is
not theoretically guaranteed. Estimators 2—-3 yield outlying values when both models are mis-
specified, possibly because they are not bounded.

Estimators 6 and 10—-12 have mean squared errors higher than the range of those of estimators
16—20 when the propensity score model is correct but the outcome regression model is misspeci-
fied and when both models are misspecified. The differences between estimator 16 and estimator
10 usingrnoLs and between estimators 18—19 and estimators 6 and 11-12rmgingindicate
the advantage of using the extended propensity staneer 7y, andey.

Estimator 7 has mean squared errors slightly smaller than those of estimators 16—20 but still
greater than those of estimators 21-22 when the propensity score model is correct but the out-
come regression model is misspecified and when both models are misspecified. This comparison
agrees with the facts that estimators 7 and 21-22 are improved-locally efficientiugingut
estimators 21-22 are further intrinsically efficient and bounded.

Estimators 14—15 improve upon related estimators 4-5, but still perform overall worse than
estimators 16-22. Particularly, estimators 14-15 have considerable biases when the propensity
score model is correctly specified but the outcome regression model is misspecified.

For the causal inference setup, Figure 2 presents the boxplots of 13 estimators of for
n = 1000 and the lower half of Table 2 presents the ratios of mean squared errors=f@00
and 1000. The relative performances of the estimators are overall similar to those in the missing
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data setup. However, there are interesting new patterns. The reduction in mean squared errors
by using estimators 21-22 over other estimators becomes more substantial than in the missing
data setup when the propensity score model is correct but the outcome regression model is mis-
specified and when both models are misspecified. Estimators 2—3 yield an increased number of
outlying values when the propensity score model is misspecified. Estimators 10-11 yield an in-
creased number of outlying values except when both models are correct. Estimators 14-15 have
increased biases when the outcome regression model is misspecified.
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APPENDIX 1

Technical details
Condition (4) for{()\). The claim holds by the following results. Lét, = {\ : ATh(X;) =0, i =
,npandAs = {\: ATB(Xi) >0if R, =1 and)\Tﬁ(Xi) <0ifR;=0,i=1,...,n}. First, if A;

is empty, then/(\) is strictly concave. Otherwise, there exists sojeuch thaty™(9%¢/ONONT)x
= —E{w2R(x"h)? +(1 —w)2(1 — R)(x"h)?} = 0. Thenx"h(X;) = 0 for i = 1,...,n, a contra-
diction. Second, ifA- is empty, ther¢()\) is bounded from above. Otherwise, there exists a sequence
of pairs (cg, xx), wherec, > 0 and x, is a unit vector, such that(cpxx) — oo ask — oo. Then
cr — oo. By compactness of the unit ball, there exists a unit vegtmsuch thaty, — xo ask — oo. For
i=1,...,nwith R, =1, lettingk — oo in X;h(X ) > —7w (X;)/cx yields xEh(X;) > 0. Similarly,
fOfl—]ﬁu.JlWﬂh]%——O,Engk-ﬁlenX$h< X;) < {1 — 7L (Xi)} e yields xTh(X;) < 0.
Third, if there exists somg € A1, thenl(\ + ¢y) is linear inc and hencé(\) is not strictly concave. If
there exists somg € As buty ¢ Ay, thenl(A + ¢x) — oo asc — oo and hence is unbounded.

Condition (12) fork,(A1). The claim holds by the following results. Let; = {)\; : A\T0(X;) =
0if R =1,i=1,...,n} and Ao = {\; : \TO(X;) > 0if R; =1,i=1,...,n, and E{AT0(X)} <
0}. First, if A; is empty, thenk;()\;) is strictly concave. Otherwise, there exists somesuch
that x™(9%k1 /0N ONT)x = —E{w 2R(1 — 7m) (X" 0)?} = 0. Then x™#(X;) =0 for i=1,...,n
with R; = 1, a contradiction. Second, ifi; is empty, thenx;();) is bounded from above. Other-
wise, there exists a sequence of pa(rg, xx), where ¢, > 0 and x, is a unit vector, such that
k1(ckxk) — oo ask — oo. Thenc¢, — oo. By compactness of the unit ball, there exists a unit vec-
tor xo such thaty, — xo ask — co. Fori=1,...,n with R; =1, letting k — oo in X",gle(Xi) >
—{AmL(X3) + ASho(X5)}/ex yieldsx§0(X;) > 0. Moreover,E{x§0(X)} < 0. Otherwises; (cjxx) =
e E(R[log{w(X; crxr, A2)} — log{w(X; M)}/ (1 — #mL)/ex — X10) — —oo ask — oo. Third, if there
exists somee € A1, thenk; (A1 + cx) is linear inc and hence: (A1) is not strictly concave. If there exists
somey € A; butx ¢ Ay, thens, (A + ¢x) — oo ase — oo and hence is unbounded.

Asymptotic expansion offi k. Let x = M step2— A\1. Then w(X; Astepz) = w(X; A+ X )\2)
Under regularity conditions,y converges to a constan{’ in probability with the expansion
X —x' = BI P E{R/w(X; A 4+ xT, o) — 1}0(X)] 4 0,(n"1/2), where B, = E[{R/w?(X; )\ +
x", A2)Yhi(X)0™(X)]. Moreover, a Taylor expansion @f ik, abouty yields

fitke = E L ~CIBI'E B H(X)
( w(X;5 A1+ xF, A2)

w Xa/\l +XT7>\2)
whereCy = E[{RY/w?(X; A1 + X, A2) }hy (X)]. If model (2) is correctly specified, thep’ = 0, and
E[{R/w(X;)) — 1}0(X)] = 0,(n~'/?) by the discussion in Section2 The foregoing expansion re-
duces tiiLke = ik + 0p(n1/3).

+ Op(n71/2)7
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Condition (16) forz1(v1). The proof is similar to that fok;(r;) and condition (12). Let\; =
{v1 :Vf0(X;)=0if Ry, =1,i=1,...,n} and Ay = {1y : {0(X;) > 0if R, =1,i=1,...,n, and
E{(1 - R)rT0(X)} < 0}. We only show that ifA, is empty, thens,(v;) is bounded from above.
Otherwise, there exists a sequence of p&ifs x«), wherec; > 0 and x; is a unit vector, such that
J1(ckxx) — oo ask — oo. Thene,, — co. By compactness of the unit ball, there exists a unit veggor
such thaty, — xo ask — oo. Thenxjo(X;) > 0fori =1,...,nwith R; = 1. Otherwisey;0(X;) < 0
for all sufficiently largek and.7; (¢ xx) — —oo ask — oo. Moreover,E{(1 — R)x30(X)} < 0. Other-
wise 71 (cxxr) < —ex E{(1 — R)x}0(X)}, which goes to-oco ask — oc.
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