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SUMMARY

Consider the problem of estimating the mean of an outcome in the presence of missing data or
estimating population average treatment effects in causal inference. A doubly robust estimator
remains consistent if an outcome regression model or a propensity score model is correctly spec-
ified. We build on the nonparametric likelihood approach of Tan and propose new doubly robust
estimators. These estimators have desirable properties in efficiency if the propensity score model
is correctly specified, and in boundedness even if the inverse probability weights are highly vari-
able. We compare new and existing estimators in a simulation study and find that the robustified
likelihood estimators yield overall the smallest mean squared errors.

Some key words: Causal inference; Double robustness; Inverse weighting; Missing data; Nonparametric likelihood;
Propensity score.

1. INTRODUCTION

Consider the problem of estimating the mean of an outcome in the presence of missing data
under ignorability (Rubin, 1976). A related problem is to estimate population average treatment
effects under no unmeasured confounding in causal inference (Neyman, 1923; Rubin, 1974).
Such problems can be handled in two different ways. One approach is to model the mean of the
outcome given covariates, called the outcome regression function, and derive an estimator based
on the fitted values for observed and missing outcomes. The other approach is to model the prob-
ability of non-missingness given the covariates, called the propensity score (Rosenbaum & Ru-
bin, 1983), and derive an estimator through inverse probability weighting of observed outcomes.
Inverse-probability-weighted estimators are central to the semiparametric theory of estimation
with missing data (e.g., Tsiatis, 2006; van der Laan & Robins, 2003).

The two approaches rely on different modelling assumptions and one does not necessarily
dominate the other (Tan, 2007). A doubly robust approach makes use of both the outcome re-
gression model and the propensity score model and derives an estimator that remains consistent
if either of the two models is correctly specified. A prototypical doubly robust estimator is the
augmented inverse-probability-weighted estimator of Robins et al. (1994). Recently, a number
of alternative doubly robust estimators have been proposed. See Kang & Schafer (2007) and
the related discussions. All existing doubly robust estimators are locally efficient: they attain the
semiparametric variance bound, and hence asymptotically equivalent to each other, if both the
propensity score model and the outcome regression model are correctly specified. Therefore, it
is important to compare doubly robust estimators in their statistical properties if only one of the
models is correctly specified or if both models are misspecified.
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2 Z. TAN

We review various doubly robust estimators and highlight statistical criteria underlying their
construction. Some estimators are intrinsically efficient: if the propensity score model is correctly
specified, then each of them is asymptotically efficient among a class of augmented inverse-
probability-weighted estimators that use the same fitted outcome regression function (Tan, 2006,
2007). Some estimators are improved-locally efficient: if the propensity score model is correctly
specified, then they are asymptotically at least as efficient as the augmented inverse-probability-
weighted estimator that uses the true propensity score and an optimally fitted outcome regression
function (Rubin & van der Laan, 2008; Tan, 2008). Some estimators are population-bounded or
sample-bounded: they lie within the range of all possible values or that of observed values of
the outcome (Robins et al., 2007). The properties of boundedness rule out estimates outside the
population or sample range even when the inverse probability weights are highly variable.

We propose a robustification of the likelihood estimator of Tan (2006), named calibrated like-
lihood estimator, by calibrating the coefficients in a linear, extended propensity score model. The
estimator is computationally convenient, involving two steps of maximizing concave functions.
Moreover, the estimator is locally and intrinsically efficient and sample-bounded, and is further
improved-locally efficient if the outcome regression function is suitably estimated. No existing
doubly robust estimators achieve these four properties simultaneously.

We further derive a robustification of the likelihood estimator of Tan (2006), named aug-
mented likelihood estimator, by incorporating an augmentation term. This estimator satisfies
only a weaker form of boundedness than population and sample boundedness. We compare new
and existing estimators in a simulation study and find that the calibrated and augmented likeli-
hood estimators yield overall the smallest mean squared errors.

2. M ISSING DATA PROBLEMS

2·1. Setup
Let X be a vector of covariates andY be an outcome. The variablesX are always observed,

butY may be missing. LetR be the non-missing indicator such thatR = 1 or 0 if Y is observed
or missing respectively. Throughout, assume that the missing data mechanism is ignorable, that
is, R andY are conditionally independent givenX (Rubin, 1976).

Suppose that an independent and identically distributed sample ofn units is available. The
observed data consist of(Xi, Ri, RiYi), i = 1, . . . , n. Our objective is to estimate the population
meanµ = E(Y ). Although this problem is simple to describe, it provides a basic setting for us
to investigate methods for handling missing data.

2·2. Models
There are two different ways of postulating dimension-reduction assumptions to obtain con-

sistent and asymptotically normal estimators ofµ. One approach is to specify a parametric model
for the outcome regression functionm(X) = E(Y | X) in the form

E(Y | X) = m(X; α) = Ψ{αTg(X)}, (1)

whereΨ is an inverse link function,g(x) is a vector of known functions including the con-
stant 1, andα is a vector of unknown parameters. Letα̂OLS be the maximum quasi-likelihood
estimator ofα or its variant. For concreteness, fix̂αOLS as the estimator that solves the equation
0 = Ẽ [R{Y −m(X; α)}g(X)], whereẼ denotes sample average. Letµ̂OLS = Ẽ{m̂OLS(X)},
wherem̂OLS(X) = m(X; α̂OLS). Under regularity conditions, if model (1) is correctly specified,
thenµ̂OLS is consistent and asymptotically normal, with asymptotic variance no greater than the
semiparametric variance bound, provided thatE(Y 2) < ∞.
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Biometrika style 3

The other approach is to specify a parametric model for the propensity scoreπ(X) = P (R =
1 | X) in the form

P (R = 1 | X) = π(X; γ) = Π{γTf(X)}, (2)

whereΠ is an inverse link function,f(x) is a vector of known functions, andγ is a vector of un-
known parameters. Let̂γML be the maximum likelihood estimator ofγ and hence a solution to the
equation0 = Ẽ [{R− π(X; γ)}%(X; γ)f(X)], where%(X; γ) = Π′{γTf(X)}/[π(X; γ){1−
π(X; γ)}] andΠ′ is the derivative ofΠ. Two non-augmented inverse-probability-weighted esti-
mators are

µ̂IPW = Ẽ

{
RY

π̂ML(X)

}
, µ̂IPW,ratio = Ẽ

{
RY

π̂ML (X)

}/
Ẽ

{
R

π̂ML (X)

}
,

where π̂ML(X) = π(X; γ̂ML ). Under regularity conditions, if model (2) is correctly speci-
fied, thenµ̂IPW and µ̂IPW,ratio are consistent and asymptotically normal, with asymptotic vari-
ances no smaller than the semiparametric variance bound, provided thatE{π−1(X)} < ∞ and
E{Y 2π−1(X)} < ∞. See Tan (2007) for a comparison between the two approaches.

2·3. Existing estimators
The estimator̂µOR is based on model (1) only, and̂µIPW andµ̂IPW,ratio are based on model (2)

only. Alternatively, a range of estimators have been proposed by using both model (1) and model
(2) to gain efficiency and robustness. Many such estimators can be cast in the form

µ̂(π̂, m̂) = Ẽ

[
RY

π̂(X)
−

{
R

π̂(X)
− 1

}
m̂(X)

]
= Ẽ

[
m̂(X) +

R

π̂(X)
{Y − m̂(X)}

]
,

whereπ̂(X) andm̂(X) are fitted values ofπ(X) andm(X) respectively. See Kang & Schafer
(2007), Robins et al. (2007), and Tan (2006, 2007, 2008) for related discussions.

Consider the following estimators ofµ, with the same choicêπML (X) for π̂(X) but different
choices form̂(X). Robins et al. (1994) proposed the estimatorµ̂AIPW = µ̂(π̂ML , m̂OLS). Scharf-
stein et al. (1999) suggested the estimator

µ̂OLS,ext = µ̂{π̂ML , m̂ext(π̂ML )} = Ẽ{m̂ext(X; π̂ML )},
where m̂ext(X; π̂) = mext{X; κ̂(π̂)} and κ̂(π̂) is a solution to0 = Ẽ[R{Y −mext(X; κ)}
{π̂−1(X), gT(X)}T] for the extended outcome regression modelE(Y | X) = mext(X;κ) =
Ψ{κ1π̂

−1(X) + κT
2g(X)} with κ = (κ1, κ

T
2 )T. Kang & Schafer (2007) considered the estimator

µ̂WLS = µ̂{π̂ML , m̂WLS(π̂ML)} = Ẽ{m̂WLS(X; π̂ML)},
where m̂WLS(X; π̂) = m{X; α̂WLS(π̂)} and α̂WLS(π̂) is a solution to0 = Ẽ[Rπ̂−1(X){Y −
m(X; α)}g(X)] and hence differs from̂αOLS in using weightπ̂−1(X). Rubin & van der Laan
(2008) proposed two related estimators

µ̂RV = µ̂{π̂ML , m̂RV(π̂ML )}, µ̃RV = µ̂{π̂ML , m̃RV(π̂ML )},
where m̂RV(X; π̂) = m{X; α̂RV(π̂)} and α̂RV(π̂) = argminα Ẽ([RY/π̂(X)− {R/π̂(X)−
1}m(X; α)]2) for the first estimator andm̃RV(X; π̂) = m{X; α̃RV(π̂)} and α̃RV(π̂) =
argminα Ẽ[{R/π̂(X)}{R/π̂(X)− 1}{Y −m(X; α)}2] for the second estimator. The estima-
tor α̃RV(π̂) is a weighted least-squares estimator using weightπ̂−1(X){π̂−1(X)− 1}. Our nota-
tion makes explicit the dependency ofm̂ext(π̂), m̂WLS(π̂), m̂RV(π̂), andm̃RV(π̂) on π̂.

The choicêπML (X) for π̂(X) is derived under model (2), independently of model (1). A more
elaborate choice can be derived under an extended propensity score model with extra linear
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4 Z. TAN

predictors depending on̂m(X). Consider the model

P (R = 1 | X) = πext(X; ν) = Π
{

νT
1

υ̂(X)
%̂ML(X)π̂ML (X)

+ νT
2 f(X)

}
, (3)

where ν = (νT
1 , νT

2 )T, υ̂(X) = {1, m̂(X)}T, and %̂ML (X) = %(X; γ̂ML). Let ν̂(m̂) be the
maximum likelihood estimator ofν and write π̂ext(X; m̂) = πext{X; ν̂(m̂)}. Substitution of
π̂ext(m̂OLS) for π̂ML in µ̂IPW yields the estimator of Rotnitzky & Robins (1995),µ̂IPW,ext =
µ̂{π̂ext(m̂OLS), 0}. For m̂ = m̂OLS or m̂WLS(π̂ML), substitution of̂πext(m̂) for π̂ML in µ̂(π̂ML , m̂),
but not for that withinm̂, yields the estimators

µ̂AIPW,ext = µ̂{π̂ext(m̂OLS), m̂OLS}, µ̂WLS,ext = µ̂[π̂ext{m̂WLS(π̂ML )}, m̂WLS(π̂ML)].

by Robins et al. in a 2008 technical report at Harvard University. In addition, they proposed

µ̂WLS,ext2 = µ̂(π̂ext{m̂WLS(π̂ML)}, m̂WLS[π̂ext{m̂WLS(π̂ML)}])
through a further iteration from̂µWLS,ext.

The targeted maximum likelihood approach of van der Laan & Rubin (2006, Sections 6·2–6·3)
is closely related to the estimatorsµ̂OLS,ext andµ̂IPW,ext. With m̂OLS andπ̂ML as initial fitted values,
this approach leads to the estimators

µ̂TML = µ̂{π̂ML , m̂TML (π̂ML )} = Ẽ{m̂TML (X; π̂ML)}, µ̂TIPW = µ̂{π̂TML (m̂OLS), 0},
µ̂TAIPW = µ̂{π̂TML (m̂OLS), m̂TML(π̂ML )},

wherem̂TML (X; π̂) is obtained by fittingE(Y | X) = mext(X; κ) with κ2 fixed at α̂OLS, and
π̂TML (X; m̂) is obtained by fittingP (R = 1 | X) = πext(X; ν) with ν2 fixed at γ̂ML . The esti-
matorsµ̂IPW,ext and µ̂TIPW are similar to the two likelihood estimators of Tan (2006). The first
estimator accommodates the variation ofγ̂ML whereas the second ignores that variation.

2·4. Comparison
Consider the following criteria for evaluating estimators ofµ. Note that improved local effi-

ciency implies local efficiency, and sample boundedness implies population boundedness.

(a) Double robustness:̂µ remains consistent if either model (1) or model (2) is correctly specified.
(b) Local efficiency:µ̂ attains the semiparametric variance bound, i.e., it is asymptotically equiv-

alent to the first order tõE[RY/π(X)− {R/π(X)− 1}m(X)] if both model (1) and model
(2) are correctly specified.

(c) Improved local efficiency:µ̂ is asymptotically at least as efficient as̃E[RY/π(X)
−{R/π(X)− 1}m(X; α)] for arbitraryα if model (2) is correctly specified.

(d) Intrinsic efficiency:µ̂ attains the minimum asymptotic variance among the class of estimators
Ẽ[RY/π̂ML (X)− bT

1{R/π̂ML (X)− 1}υ̂(X)] for arbitraryb1 if model (2) is correctly speci-
fied, wherêυ(X) = {1, m̂(X)}T andm̂(X) is the fitted value ofm(X) used inµ̂. Therefore,
µ̂ is asymptotically at least as efficient asµ̂IPW, µ̂IPW,ratio, andµ̂(π̂ML , m̂).

(e) Population boundedness:µ̂ lies within the range of all possible values ofY , if model (1) or
model (2) or both are misspecified.

(f) Sample boundedness:µ̂ lies within the range of{Yi : Ri = 1, i = 1, . . . , n}, if model (1) or
model (2) or both are misspecified.

The upper half of Table 1 presents a comparison of various estimators in Section 2·3 in terms
of the foregoing criteria. See Sections 3–4 for a discussion of the likelihood and regression
estimators in the lower half of Table 1.
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Table 1.Theoretical comparison of estimators
µ̂TAIPW µ̂TML µ̂AIPW,ext
µ̂AIPW µ̂OLS,ext µ̂WLS µ̂RV µ̃RV µ̂IPW,ext µ̂WLS,ext µ̂WLS,ext2

DR X X X × X × X X
LE X X X X X X X X
IE × × × × × X X X

ILE × × × X X × × ×
PB × X X × × × × X
SB × × × × × × × ×

µ̂LIK,OLS µ̂REG,OLS µ̃REG,OLS µ̃LIK2,OLS µ̃LIK2,WLS µ̃LIK2,RV
DR × × X X X X
LE X X X X X X
IE X X X X X X

ILE × × × × × X
PB X × × X X X
SB X × × X X X

DR, LE, IE, ILE, PB, and SB correspond to criteria (a)–(f).

3. PROPOSED APPROACH

3·1. Summary
We extend the nonparametric likelihood approach of Tan (2006). The main contribution is to

obtain an estimator ofµ that is doubly robust, locally and intrinsically efficient, and sample-
bounded simultaneously. Moreover, our approach is flexible enough to allow different choices,
such asm̂OLS, m̂WLS(π̂ML ), andm̃RV(π̂ML ), for the fitted valuem̂. If m̂ = m̃RV(π̂ML ), then the
resulting estimator is further improved-locally efficient.

3·2. Non-doubly-robust likelihood estimator
We describe the likelihood estimator of Tan (2006) in the current setup of missing data. The

nonparametric likelihood of(Xi, Ri, RiYi), i = 1, . . . , n, is

L1 × L2 =

[
n∏

i=1

π(Xi; γ)Ri{1− π(Xi; γ)}1−Ri

]
×


 ∏

i:Ri=1

G1({Xi, Yi})
∏

i:Ri=0

G0({Xi})

 ,

whereG1 is the joint distribution of(X,Y ) andG0 is the marginal distribution ofX. Maximizing
L1 leads to the maximum likelihood estimatorγ̂ML . Recall thatm̂(x) is a fitted value ofm(x)
based on model (1) and̂υ(x) = {1, m̂(x)}T. Let ĥ = (ĥT

1 , ĥT
2 )T where

ĥ1(x) = {1− π̂ML(x)} υ̂(x), ĥ2(x) =
∂π

∂γ
(x; γ̂ML ).

We choose to ignore the fact thatG0 and the marginal distribution ofX underG1 are identical,
and retain only the constraints

∫
ĥ(x) dG1 =

∫
ĥ(x) dG0, i.e.,

∫
{1− π̂(x)}dG1 =

∫
{1− π̂(x)}dG0,

∫
{1− π̂(x)}m̂(x) dG1 =

∫
{1− π̂(x)}m̂(x) dG0,

∫
∂π

∂γ
(x; γ̂ML) dG1 =

∫
∂π

∂γ
(x; γ̂ML ) dG0.
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6 Z. TAN

See Kong et al. (2003) for a related formulation. The first two constraints respectively ensure that
the resulting estimator ofµ is consistent under correctly specified model (2) and locally efficient,
whereas the third constraint accounts for the variation ofγ̂ML such that the resulting estimator
is intrinsically efficient. Furthermore, we require thatG1 be a probability measure supported on
{(Xi, Yi) : Ri = 1, i = 1, . . . , n} and hence

∫
dG1 = 1, andG0 be a nonnegative measure (not

necessarily a probability) supported on{Xi : Ri = 0, i = 1, . . . , n}. MaximizingL2 subject to
these constraints leads to the estimators

Ĝ1({Xi, Yi}) =
n−1

ω(Xi; λ̂)
if Ri = 1,

Ĝ0({Xi}) =
n−1

1− ω(Xi; λ̂)
if Ri = 0,

where ω(X; λ) = π̂ML(X) + λTĥ(X), λ̂ = argmaxλ `(λ), and `(λ) = Ẽ[R log{ω(X; λ)}+
(1−R) log{1− ω(X; λ)}]. The functioǹ (λ) is finite and concave on the set{λ : ω(Xi; λ) >
0 if Ri = 1 andω(Xi; λ) < 1 if Ri = 0, i = 1, . . . , n}. Moreover,`(λ) is strictly concave and
bounded from above, and hence has a unique maximum, if and only if the set

{λ : λTĥ(Xi) ≥ 0 if Ri = 1 andλTĥ(Xi) ≤ 0 if Ri = 0, i = 1, . . . , n} is empty. (4)

See the Appendix for a proof. From our experience,λ̂ can be computed effectively by using a
globally convergent optimization algorithm such as the R packagetrust .

Setting the gradient of̀(λ) to 0 shows that̂λ is a solution to

0 = Ẽ

[
R− ω(X;λ)

ω(X; λ){1− ω(X; λ)} ĥ(X)
]

. (5)

By construction,̂λ also satisfies

1 =
∫

dĜ1 = Ẽ

{
R

ω(X; λ̂)

}
. (6)

The resulting estimator ofµ is

µ̂LIK =
∫

y dĜ1 = Ẽ

{
RY

ω(X; λ̂)

}
.

The estimator̂µLIK is structurally similar tôµIPW,ext based on the extended model (3). The valueλ̂
can be interpreted as the maximum likelihood estimator ofλ under the linear, extended propen-
sity score modelP (R = 1 | X) = ω(X; λ). However, there are important differences between
µ̂LIK andµ̂IPW,ext. First,ω(Xi; λ̂) may not lie between 0 and 1 for alli = 1, . . . , n. It is only re-
quired thatω(Xi; λ̂) > 0 if Ri = 1 andω(Xi; λ̂) < 1 if Ri = 0. Moreover, equation (6) automat-
ically holds, whereas̃E{R/π̂ext(X)} = 1 does not. By (6),ω(Xi; λ̂) with Ri = 1 are bounded
from below byn−1, andµ̂LIK is sample-bounded. In contrast,π̂ext(Xi) with Ri = 1 may be arbi-
trarily close to 0, and̂µIPW,ext is not sample-bounded.

Tan (2006, Theorem 4) obtained an asymptotic expansion ofµ̂LIK , assuming that model (2)
is correctly specified. Here, we provide a general asymptotic expansion ofµ̂LIK , allowing for
misspecification of model (1) and model (2). See Manski (1988) for related asymptotic theory
in misspecified models. Under regularity conditions,λ̂ converges to a constantλ∗ in probability
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with the expansion

λ̂− λ∗ = B̂−1 Ẽ

[
R− ω(X;λ∗)

ω(X;λ∗){1− ω(X;λ∗)} ĥ(X)
]

+ op(n−1/2),

where

B̂ = Ẽ

[ {R− ω(X;λ∗)}2

ω2(X; λ∗){1− ω(X; λ∗)}2
ĥ(X)ĥT(X)

]
.

Moreover, a Taylor expansion of̂µLIK aboutλ∗ yields

µ̂LIK = Ẽ

{
RY

ω(X;λ∗)

}
− ĈTB̂−1 Ẽ

[
R− ω(X; λ∗)

ω(X; λ∗){1− ω(X; λ∗)} ĥ(X)
]

+ op(n−1/2), (7)

where Ĉ = Ẽ[{RY/ω2(X; λ∗)}ĥ(X)]. If model (2) is correctly specified, thenλ∗ = 0
and hence the expansion reduces toµ̂LIK = µ̂REG + op(n−1/2) with µ̂REG = Ẽ(η̂)− β̂TẼ(ξ̂),
whereη̂ = RY/π̂ML(X), ξ̂ = [{R/π̂ML(X)− 1}υ̂T(X), {R− π̂ML (X)}%̂ML (X)fT(X)]T, B̂ =
Ẽ(ξ̂ξ̂T), Ĉ = Ẽ(ξ̂η̂), andβ̂ = B̂−1Ĉ is the least-squares estimator in the linear regression ofη̂

on ξ̂. The estimator̂µREG is locally and intrinsically efficient (Robins et al., 1995), but not doubly
robust. See Section 4·5 for a further discussion.

3·3. Doubly robust likelihood estimator
The estimator̂µLIK is sample-bounded and locally and intrinsically efficient. Ifm̂ = m̂RV(π̂ML )

or m̃RV(π̂ML ), thenµ̂LIK is further improved-locally efficient because it is asymptotically at least
as efficient aŝµRV or µ̃RV, which is improved-locally efficient. However,̂µLIK is not doubly ro-
bust. It may be inconsistent if model (1) is correctly specified but model (2) is misspecified. We
propose a robustification of̂µLIK such that it satisfies double robustness in addition to sample
boundedness and local and intrinsic efficiency.

We first discuss a simple version of our proposal. Consider the system of estimating equations

0 = Ẽ

[{
R

ω(X; λ)
− 1

}
υ̂(X)

]
, (8)

0 = Ẽ

[
R− ω(X;λ)

ω(X; λ){1− ω(X; λ)} ĥ2(X)
]

, (9)

which are equivalent to (5) except that(R− ω)/{ω(1− ω)} is replaced by(R/ω − 1)/(1−
π̂ML ) in the equations associated withĥ1 = (1− π̂ML )υ̂. Let λ̃ be a solution to (8)–(9) subject to
the constraint thatω(Xi; λ) > 0 if Ri = 1 (i = 1, . . . , n) and let

µ̃LIK = Ẽ

{
RY

ω(X; λ̃)

}
.

Note thatυ̂(X) includes the constant 1 and henceẼ{R/ω(X; λ̃)} = 1 by (8). Therefore,̃µLIK is
sample-bounded in a similar manner asµ̂LIK is.

We derive asymptotic expansions forλ̃ andµ̃LIK , allowing for misspecification of model (1)
and model (2), in parallel to those forλ̂ andµ̂LIK . Under regularity conditions,̃λ converges to a
constantλ† in probability with the expansion

λ̃− λ† = B̃T−1 Ẽ







{
R

ω(X;λ†) − 1
}

υ̂(X)
R−ω(X;λ†)

ω(X;λ†){1−ω(X;λ†)} ĥ2(X)





 + op(n−1/2),
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8 Z. TAN

where

B̃ = Ẽ







R
ω2(X;λ†) ĥ1(X)υ̂T(X) {R−ω(X;λ†)}2

ω2(X;λ†){1−ω(X;λ†)}2 ĥ1(X)ĥT
2 (X)

R
ω2(X;λ†) ĥ2(X)υ̂T(X) {R−ω(X;λ†)}2

ω2(X;λ†){1−ω(X;λ†)}2 ĥ2(X)ĥT
2 (X)





 .

Moreover, a Taylor expansion of̃µLIK aboutλ† yields

µ̃LIK = Ẽ

{
RY

ω(X; λ†)

}
− ĈTB̃T−1 Ẽ







{
R

ω(X;λ†) − 1
}

υ̂(X)
R−ω(X;λ†)

ω(X;λ†){1−ω(X;λ†)} ĥ2(X)





 + op(n−1/2). (10)

If model (2) is correctly specified, thenλ† = 0 and hence the expansion reduces to
µ̃LIK = µ̃REG + op(n−1/2) with µ̃REG = Ẽ(η̂)− β̃TẼ(ξ̂), where ζ̂ = [Rυ̂T(X)/π̂ML (X), {R−
π̂ML (X)}%̂ML(X)fT(X)]T, B̃ = Ẽ(ξ̂ζ̂T), and β̃ = B̃−1Ĉ. In this case,µ̂REG and µ̃REG are
asymptotically equivalent to the first order and hence so areµ̂LIK and µ̃LIK . However,µ̃REG is
akin to the doubly robust regression estimator of Tan (2006). These regression estimators, unlike
µ̂REG, satisfies double robustness in addition to local and intrinsic efficiency.

The estimatorŝµLIK andµ̃LIK are sample-bounded and locally and intrinsically efficient. How-
ever,µ̃LIK , unlike µ̂LIK , is further doubly robust. This difference follows from the general asymp-
totic expansions (7) for̂µLIK and (10) forµ̃LIK . The leading terms are structurally similar to
respectivelŷµREG, which is not doubly robust, and̃µREG, which is doubly robust. Alternatively,
µ̃LIK is doubly robust because

Ẽ

{
R

ω(X; λ̃)
m̂(X)

}
= Ẽ{m̂(X)} (11)

by (8) and hencẽµLIK is identical toµ̂{ω(·; λ̃), m̂} in the typical form of doubly robust esti-
mators. In contrast,̃E{Rm̂(X)/ω(X; λ̂)} = Ẽ{m̂(X)} does not necessarily hold for̂µLIK . We
regardλ̃ as a calibration of the maximum likelihood estimatorλ̂ in the linear, extended propen-
sity score modelP (R = 1 | X) = ω(X; λ) such that equation (11) holds.

So far, we seem to fulfil the objective of deriving an estimator that is doubly robust, locally
and intrinsically efficient, and sample-bounded. However, there remain subtle issues about the
existence and computation ofλ̃. First, it is difficult to characterize conditions under which there
exists a solution to (8)–(9) subject to the constraint thatω(Xi; λ) > 0 if Ri = 1 (i = 1, . . . , n).
Moreover, algorithms for solving nonlinear equations such as (8)–(9) may fail to locate a solu-
tion, much less all possible solutions, if any exists. It presents a further challenge to accommodate
the constraint on the domain ofλ. Finally, if indeed there exists no solution or multiple solutions,
it remains difficult to redefinẽλ or select̃λ among multiple solutions. These difficulties are ap-
plicable not only to (8)–(9), but to nonlinear estimating equations in general. See Small et al.
(2000) for a survey that mainly deals with multiple solutions.

We now discuss a more effective version of our proposal to address the foregoing issues.
Recall that̂λ is defined as a maximizer of`(λ). Under condition (4),̀(λ) is strictly concave and
bounded from above and henceλ̂ exists and is unique. Consider the following two-step estimator.

(a) Computêλ = (λ̂T
1 , λ̂T

2 )T, partitioned according tôh = (ĥT
1 , ĥT

2 )T.
(b) Computẽλstep2= (λ̃T

1,step2, λ̂
T
2 )T, whereλ̃1,step2= argmaxλ1

κ1(λ1) and

κ1(λ1) = Ẽ

[
R

log{ω(X; λ1, λ̂2)} − log{ω(X; λ̂)}
1− π̂ML(X)

− λT
1 υ̂(X)

]
.
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The functionκ1(λ1) is finite and concave on the set{λ1 : ω(Xi;λ1, λ̂2) > 0 if Ri = 1, i =
1, . . . , n}. Moreover, as shown in the Appendix,κ1(λ1) is strictly concave and bounded from
above, and hence has a unique maximum, if and only if the set

{λ1 : λT
1 υ̂(Xi) ≥ 0 if Ri = 1, i = 1, . . . , n, andẼ{λT

1 υ̂(X)} ≤ 0} is empty. (12)

Like λ̂ in step (a),̃λ1,step2 in step (b) can be computed effectively by using a globally convergent
optimization algorithm such as the R packagetrust .

Setting the gradient ofκ1(λ1) to 0 shows that̃λ1,step2 is a solution to

0 = Ẽ

[{
R

ω(X; λ1, λ̂2)
− 1

}
υ̂(X)

]
, (13)

which is equivalent to (8) withλ2 evaluated at̂λ2. In fact, we consider (13) as estimating equa-
tions and obtainκ1(λ1) as an objective function by integrating the right side of (13). This con-
struction is feasible because the matrix of the partial derivatives of the right side of (13) is sym-
metric and negative-semidefinite. In the degenerate case whereĥ2(X) is removed from̂h(X),
thenλ consists ofλ1 only and hencẽλ andλ̃step2are identical.

The resulting estimator ofµ is

µ̃LIK2 = Ẽ

{
RY

ω(X; λ̃step2)

}
.

The estimatorµ̃LIK2 , like µ̃LIK , is sample-bounded and doubly robust due to, respectively,
Ẽ{R/ω(X; λ̃step2)} = 1 and E{Rm̂(X)/ω(X; λ̃step2)} = E{m̂(X)} by (13). Furthermore,
µ̃LIK2 is asymptotically equivalent to the first order tôµLIK and µ̃LIK if model (2) is correctly
specified, and hence is locally and intrinsically efficient. See the Appendix for an asymptotic
expansion of̃µLIK2 , allowing for misspecification of model (1) and model (2).

The foregoing development allows a general choice of the fitted valuem̂(X). The estimator
µ̃LIK2 is doubly robust, locally and intrinsically efficient, and sample-bounded. Nevertheless, dif-
ferent choices of̂m(X) lead to specific versions of̃µLIK2 that differ beyond the four properties.
Denote byµ̃LIK2,OLS, µ̃LIK2,WLS, andµ̃LIK2,RV the versions of̃µLIK2 corresponding tôm = m̂OLS,
m̂WLS(π̂ML ), andm̃RV(π̂ML), and similarly denote those of̂µLIK , µ̂REG, andµ̃REG. The estimator
µ̃LIK2,RV , unlike µ̃LIK2,OLS and µ̃LIK2,WLS, is further improved-locally efficient. See Table 1 for a
comparison of these estimators among other estimators.

4. EXTENSIONS AND COMPARISONS

4·1. Specification of̂υ(X)
The vector̂υ(X) is so far fixed as{1, m̂(X)}T. However, it can be replaced throughout by a

general vector of known functions ofX including the constant 1 as in Tan (2006). With this ex-
tension,̂µLIK andµ̃LIK2 still have asymptotic expansions in the current forms. The two estimators
are sample-bounded and intrinsically efficient. Furthermore, if

m̂(X) = bT
1 υ̂(X) for some vectorb1, (14)

then µ̂LIK is locally efficient, andµ̃LIK2 is doubly robust and locally efficient. Condition (14)
automatically holds for̂υ(X) = {1, m̂(X)}T with b1 = (0, 1)T.

Consider the case where model (1) is linear with identity linkΨ. Theng(X) is an alternative
choice ofυ̂(X) satisfying (14). For this choice, intrinsic efficiency implies improved local effi-
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ciency and hencêµLIK andµ̃LIK2 are improved-locally efficient. This result can also be seen from
the following relationship. Suppose thatĥ2(X) is removed from̂h(X) throughout. Then̂µREG

and µ̃REG are identical tôµRV and µ̃RV respectively, which are improved-locally efficient (Tan,
2008). The estimatorŝµLIK andµ̃LIK2 have increased asymptotic variances, but are still asymptot-
ically equivalent to the first order tôµREG andµ̃REG if model (2) is correctly specified. Therefore,
the original estimatorŝµLIK andµ̃LIK2 are improved-locally efficient.

4·2. Estimation ofE(X) andG1

The estimatorŝµLIK andµ̃LIK2 for µ = E(Y ) can be used for estimatingE(X) with Y replaced
by X, and similarly for estimating the expectations of functions ofX. The resulting estimators
have similar properties to those ofµ̂LIK andµ̃LIK2 .

Suppose thatX is contained in̂υ(X) by specification. If model (2) is correctly specified, then
Ẽ{RX/ω(X; λ̂)} is asymptotically at least as efficient as̃E[RX/π̂ML (X)− {R/π̂ML(X)−
1}X] = Ẽ(X) by intrinsic efficiency, and hence asymptotically equivalent to the first order to
Ẽ(X). The estimatorẼ{RX/ω(X; λ̃step2)}, in contrast withẼ{RX/ω(X; λ̂)}, is identical to
Ẽ(X) by (13), whether or not model (2) is correctly specified.

Estimation ofE(Y ), E(X), and the expectations of functions of(X, Y ) is unified in esti-
mation ofG1 from the distributional perspective of Tan (2006). LetG̃1,step2 be the probability
measure supported on{(Xi, Yi) : Ri = 1, i = 1, . . . , n} such that ifRi = 1 then

G̃1,step2({Xi, Yi}) =
n−1

ω(Xi; λ̃step2)
.

Then Ĝ1 and G̃1,step2 are both estimators ofG1, supported on the completely observed data.
However,G̃1,step2 satisfies

∫
υ̂(x) dG̃1,step2= Ẽ{υ̂(X)}, i.e., the weighted average ofυ̂(X) un-

derG̃1,step2 is exactly matched to the overall sample average ofυ̂(X).
We compare our approach with the empirical likelihood approach of Qin & Zhang (2003).

Their approach is to maximize
∏

i:Ri=1 G1({Xi, Yi}) subject to the constraints thatG1 is a prob-

ability measure supported on{(Xi, Yi) : Ri = 1, i = 1, . . . , n} and
∫

â(x) dG1 = Ẽ{â(X)},
whereâ(x) = {π̂ML(x), m̂(x)}T. The maximization leads to the estimator that ifRi = 1 then

ĜQZ({Xi, Yi}) =
n−1

1

1 + λ̂T
QZ[â(Xi)− Ẽ{â(X)}] ,

where n1 =
∑n

i=1 Ri, λ̂QZ = argmaxλ1
`QZ(λ1) and `QZ(λ1) = Ẽ{R log(1 + λT

1 [â(Xi)−
Ẽ{â(X)}])}. The estimator̂µQZ =

∫
y dĜQZ is sample-bounded due to

∫
dĜQZ = 1, and doubly

robust and locally efficient due to
∫

m̂(x) dĜQZ = Ẽ{m̂(X)}. However,µ̂QZ is not intrinsically
or improved-locally efficient, even in the special case whereπ(X) is known and substituted for
π̂ML (X) andm̂RV(π̂ML ) or m̃RV(π̂ML) is used form̂.

4·3. Augmentation of̂µLIK

The estimator̃µLIK2 is derived as a robustification of̂µLIK to realize double robustness and re-
tain sample boundedness and local and intrinsic efficiency. Our method is to calibrate the estima-
tion of λ. An alternative method for robustification is to augmentµ̂LIK with the additional term
Ẽ[{R/ω(X; λ̂)− 1}m̂(X)], in a similar manner to augmentinĝµIPW,ext to µ̂AIPW,ext by Robins
et al. in their 2008 technical report. The resulting estimator is doubly robust and locally and
intrinsically efficient, but not sample-bounded.
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Recall thatλ̂ = λ̂(m̂) depends onm̂ and write ω̂(X; m̂) = ω{X; λ̂(m̂)}. Substitution of
ω̂(m̂) for π̂ext(m̂) in various estimators in Section 2·3 leads to

µ̂AIPW,lik = µ̂{ω̂(m̂OLS), m̂OLS}, µ̂WLS,lik = µ̂[ω̂{m̂WLS(π̂ML )}, m̂WLS(π̂ML)],
µ̂WLS,lik2 = µ̂(ω̂{m̂WLS(π̂ML)}, m̂WLS[ω̂{m̂WLS(π̂ML)}]), µ̃RV,lik = µ̂[ω̂{m̃RV(π̂ML)}, m̃RV(π̂ML )].

These estimators are similar to their counterparts in Section 2·3 in terms of the six properties
in Table 1. The estimator̂µ{ω̂(m̂), m̂} is not population-bounded or sample-bounded, whereas
µ̂WLS,lik2 is population-bounded. Nevertheless,µ̂{ω̂(m̂), m̂} is bounded in the absolute value by
∆ = max{| m̂(Xi) |: i = 1, . . . , n}+ max{| Yi − m̂(Xi) |: Ri = 1, i = 1, . . . , n}, due to nor-
malization (6). In contrast,̂µ{π̂ext(m̂), m̂} may lie outside this range, because such a normaliza-
tion does not hold for̂πext(X) as discussed in Section 3·2.

Kang & Schafer (2007) and Robins et al. (2007) considered a modification ofµ̂(π̂, m̂) by
deliberately normalizing the weights, that is,

µ̂ratio(π̂, m̂) = Ẽ−1

{
R

π̂(X)

}
Ẽ

(
RY

π̂(X)
− R

π̂(X)
[m̂(X)− Ẽ{m̂(X)}]

)

= Ẽ{m̂(X)}+ Ẽ−1

{
R

π̂(X)

}
Ẽ

[
R

π̂(X)
{Y − m̂(X)}

]
.

The estimator̂µratio{π̂ext(m̂), m̂} is bounded in the absolute value by∆. Moreover, it is similar
to µ̂{π̂ext(m̂), m̂} andµ̂{ω̂(m̂), m̂} in terms of the six properties in Table 1. These estimators,
two based on̂πext and one based on̂ω, are asymptotically equivalent to each other if model (2) is
correctly specified, but may differ in various ways otherwise.

4·4. Bounded robustification of̂µIPW,ext

The estimator̂µAIPW,ext is doubly robust but not sample-bounded. An alternative robustification
of µ̂IPW,ext can be derived such that it is doubly robust and sample-bounded in a similar manner as
µ̃LIK2 is derived fromµ̂LIK . Our method is to calibrate estimation ofν in the extended model (3).
For simplicity, fix Π(z) = expit(z), i.e., {1 + exp(−z)}−1. Then%(X; γ) ≡ 1 free of γ, and
πext(X; ν) reduces toΠ{νT

1 υ̂(X)/π̂ML(X) + νT
2 f(X)}.

Recall that̂ν = (ν̂T
1 , ν̂T

2 )T is the maximum likelihood estimator ofν and hence a solution to

0 = Ẽ
[{R− πext(X; ν)} f(X)

]
,

0 = Ẽ

[
{R− πext(X; ν)} υ̂(X)

π̂ML (X)

]
. (15)

Let ν̃step2= (ν̃T
1,step2, ν̂

T
2 )T, ν̃1,step2= argmaxν1

J 1(ν1), and

J 1(ν1) = Ẽ

[
−Rπ̂ML(X) exp

{
−νT

1

υ̂(X)
π̂ML(X)

− ν̂T
2 f(X)

}
− (1−R)νT

1 υ̂(X)
]

by integrating the right side of (17) below. The functionJ 1(ν1), unlike`(λ) andκ1(λ1), is finite
and concave everywhere. Moreover,J 1(ν1) is strictly concave and bounded from above, and
hence has a unique maximum, if and only if the set

{ν1 : νT
1 υ̂(Xi) ≥ 0 if Ri = 1, i = 1, . . . , n, andẼ{(1−R)νT

1 υ̂(X)} ≤ 0} is empty. (16)

See the Appendix for a proof. The existence condition (16) forν̃1,step2 is more demanding than
(12) for λ̃1,step2 in that (16) implies (12), but not necessarily vice versa. Setting the gradient of
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J 1(ν1) to 0 shows that̃ν1,step2 is a solution to

0 = Ẽ

[{
R

πext(X; ν1, ν̂2)
− 1

}
υ̂(X)

]
, (17)

which is equivalent to (15) with(R− πext) replaced by(R/πext− 1)π̂ML andν2 evaluated at̂ν2.
The resulting estimator ofµ is µ̃IPW,ext2 = Ẽ{RY/πext(X; ν̃step2)}. This estimator, likẽµLIK2 , is
doubly robust, locally and intrinsically efficient, and sample-bounded.

We comparẽµIPW,ext2 with the bounded, doubly robust estimator of Robins et al. (2007, Sec-
tion 4·1·2). Consider the extended propensity score modelπext,RSLR(X; χ, γ) = Π(χ[m̂(X)−
Ẽ{m̂(X)}] + γTf(X)). Let χ̂ = χ̂(m̂) be a solution to

0 = Ẽ

(
R

πext,RSLR(X; χ, γ̂ML)
[m̂(X)− Ẽ{m̂(X)}]

)
,

and write π̂ext,RSLR(X; m̂) = πext,RSLR{X; χ̂(m̂), γ̂ML}. The estimator µ̂IPW,ext,RLSR= µ̂ratio

{π̂ext,RSLR(m̂), 0} is sample-bounded. Moreover, it is identical toµ̂ratio{π̂ext,RSLR(m̂), m̂} by the
construction ofχ̂ and hence is doubly robust and locally efficient. However, it is not intrinsi-
cally or improved-locally efficient, even in the case whereγ̂ML is replaced by the true value and
m̂(X)− Ẽ{m̂(X)} in πext,RSLR(X; χ, γ) is replaced by[m̂(X)− Ẽ{m̂(X)}]/π(X).

4·5. Regression estimators
The estimatorŝµREG and µ̃REG are called regression estimators (Tan, 2006, 2007), with con-

nection to survey sampling (e.g., Cochran, 1977) and Monte Carlo integration (e.g., Hammers-
ley & Handscomb, 1964). The idea is to exploit the fact that if model (2) is correctly specified,
then η̂ has meanµ and ξ̂ has mean 0 asymptotically. The estimatorµ̂REG attains the minimum
asymptotic variance among the class of estimatorsẼ(η̂)− bTẼ(ξ̂) for arbitrary b. Moreover,
µ̃REG is asymptotically equivalent to the first order tôµREG because both̃β and β̂ converge
β = E−1(ξξT)E(ξη) in probability. Note thatẼ(ξ̂2) = 0 and henceẼ(η̂)− bTẼ(ξ̂) reduces
to Ẽ(η̂)− bT

1 Ẽ(ξ̂1), whereb = (bT
1 , bT

2 )T andξ̂ = (ξ̂T
1 , ξ̂T

2 )T according tôh = (ĥT
1 , ĥT

2 )T.
The estimatorŝµREG and µ̃REG are no longer asymptotically equivalent if model (2) is

misspecified. In fact,̃µREG is doubly robust whereaŝµREG is not. The estimator̃µREG is
akin to the doubly robust regression estimator of Tan (2006), in whichη̂ is defined as
{Rυ̂T(X)/π̂ML (X), R%̂ML (X)fT(X)}T. A benefit of using this version of̂η is that the result-
ing matrix B̃ is symmetric and negative-semidefinite. Moreover, if{λ : λTh(Xi) = 0 if Ri =
1, i = 1, . . . , n} is empty, thenB̃ is negative-definite. This symmetrization tends to stabilize the
inversion ofB̃ in β̃ = B̃−1Ĉ and hence improve the finite-sample behavior ofµ̃REG.

A similar symmetrization can be applied to estimating equations (8)–(9). Consider the follow-
ing estimating equations in place of (9)

0 = Ẽ

[{
R

ω(X; λ)
− 1

}
ĥ2(X)

1− π̂ML(X)

]
. (18)

The matrix of the partial derivatives of the right sides of (8) and (18) is symmetric and negative-
semidefinite. If{λ : λTĥ(Xi) = 0 if Ri = 1, i = 1, . . . , n} is empty, then the matrix is negative-
definite. In fact, (8) and (18) are jointly equivalent to setting to 0 the gradient ofκ(λ) =
Ẽ([R log{ω(X; λ)} − λTĥ(X)]/{1− π̂ML (X)}), similarly as (13) is obtained fromκ1(λ1). The
functionκ(λ) has similar properties of concavity and boundedness to those ofκ1(λ1). Therefore,
it is numerically convenient to redefinẽλ as a maximizer toκ(λ) or equivalently a solution to
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(8) and (18) subject to the constraint thatω(Xi; λ) > 0 if Ri = 1 (i = 1, . . . , n). The resulting
estimator̃µLIK is comparable tõµLIK2 in terms of the six properties in Table 1.

A limitation of the modified estimator̃µLIK as compared with̃µLIK2 is that it is difficult to
generalizẽµLIK while retaining the structure of̃λ to the setup of causal inference with non-binary,
discrete treatments. See Section 5·4 for a further discussion.

5. CAUSAL INFERENCE

5·1. Setup
We now turn to causal inference in the framework of potential outcomes (Neyman, 1923;

Rubin, 1974). LetX be a vector of covariates andY be an outcome as before. LetT be a
treatment variable taking values inT = {0, 1, . . . , J − 1} with J ≥ 2, where 0 denotes the
null treatment or placebo. For eacht ∈ T , let Yt be the potential outcome that would be ob-
served under treatmentt. We make the consistency assumption thatY = Yt if T = t, and the
no-confounding assumption that for eacht ∈ T , Rt andYt are conditionally independent given
X, whereRt = 1{T = t}. Throughout,1{·} denotes the indicator function.

The observed data consist of independent and identically distributed(Xi, Ti, Yi), i = 1, . . . , n.
Our objective is to estimate the population meanµt = E(Yt) for t ∈ T . The differenceµt − µ0

is called the average causal effect of treatmentt. To a certain extent, this problem can be handled
asJ separate problems of estimatingµt from the data(Xi, Rt,i, Rt,iYt,i), i = 1, . . . , n, as in
Sections 2–4. However, the estimators ofµt obtained in this way are not jointly intrinsically
efficient and hence those ofµt − µ0 may be inefficient even marginally.

5·2. Models and existing estimators
Consider a parametric model form(t,X) = E(Y | T = t,X) in the form

E(Y | T = t,X) = m(t,X; α) (t ∈ T ), (19)

wherem(t, x; α) is a known function andα is a vector of unknown parameters. To focus on
main ideas, assume thatm(t,X; α) = Ψ{αT

t g(X)}, whereαt is a vector of unknown parameters
andα = (αT

0 , . . . , αT
J−1)

T. This specification of (19) is separable in the sense thatm(t,X; α)
depends onα only throughαt. By abuse of notation, treatm(t, X; α) asm(t,X;αt). Let α̂t,OLS

be a solution to0 = Ẽ[Rt{Y −m(t,X; αt)}g(X)] and writem̂OLS(t,X) = m(t,X; α̂t,OLS).
Consider a parametric model forπ(t,X) = P (T = t | X) in the form

P (T = t | X) = π(t,X; γ) (t ∈ T ), (20)

whereπ(t, x; γ) is a known function andγ is a vector of unknown parameters. Letγ̂ML be the
maximum likelihood estimator ofγ and writeπ̂ML(t,X) = π(t, X; γ̂ML ). A convenient specifi-
cation of (20) is the multinomial logit model

π(t,X; γ) =
exp{γT

t f(X)}∑
j∈T exp{γT

j f(X)} , (21)

whereγ = (γT
0 , γT

1 , . . . , γT
J−1)

T with γ0 = 0. In this case, the score equations forγ̂ML are0 =
Ẽ[{Rt − π(t,X; γ)}f(X)] for t = 1, . . . , J − 1.

To estimateµt, the estimators in Section 2·3 can be adopted. Replaceµ̂(π̂, m̂) by

µ̂t(π̂, m̂) = Ẽ

[
RtY

π̂(t,X)
−

{
Rt

π̂(t,X)
− 1

}
m̂(t,X)

]
,
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whereπ̂(t,X) andm̂(t,X) are estimators ofπ(t,X) andm(t,X) respectively. Various choices
of the two estimators are available. The estimatorm̂OLS(t, X) is a simple choice of̂m(t,X),
and π̂ML(t,X) is a simple choice of̂π(t,X). Moreover, there are iterative choices ofm̂(t,X)
andπ̂(t, X). Let m̂ext(t,X; π̂) = mext{t,X; κ̂t(π̂)}, m̂WLS(t,X; π̂) = m{t,X; α̂t,WLS(π̂)}, and
m̃RV(t,X; π̂) = m{t,X; α̃t,RV(π̂)}, whereκ̂t(π̂), α̂t,WLS(π̂), andα̃t,RV(π̂) are obtained by sub-
stitutingRt, π̂(t,X), andm(t,X; αt) for R, π̂(X), andm(X; α) throughout in̂κ(π̂), α̂WLS(π̂),
andα̃RV(π̂). Construction of an extension tôπext(m̂) seems difficult for a general specification of
model (20) withJ > 2. Nevertheless, the task is straightforward if the multinomial logit specifi-
cation (21) is used. Consider the model

P (T = t | X) = πext(t,X; ν) =
1

C(X; ν)
exp





∑

j∈T
νT
1t,j

υ̂(j, X)
π̂ML(j,X)

+ νT
2tf(X)



 , (22)

where ν = (νT
1 , νT

2 )T, ν1 is the vector ofν1t,j for t, j ∈ T with ν10,j = 0 for j ∈ T and
ν1t,0 = ν11,0 for t 6= 0, ν2 is the vector ofν2t for t ∈ T with ν20 = 0, υ̂(j,X) = {1, m̂(j,X)}T,
andC(X; ν) is determined by

∑
t∈T πext(t,X; ν) ≡ 1. Let ν̂(m̂) be the maximum likelihood es-

timator ofν and writeπ̂ext(t,X; m̂) = πext{t,X; ν̂(m̂)}. The foregoing choices of̂m(t,X) and
π̂(t,X) can be employed in similar combinations to those ofm̂(X) and π̂(X) in Section 2·3.
Label the resulting estimators ofµt accordingly.

For eacht ∈ T , the marginal behavior of̂µt can be evaluated by the criteria in Section 2·4.
However, consider the following criteria for the joint behavior of(µ̂0, µ̂1, . . . , µ̂J−1). We say
that a vector-valued estimatorθ̂1 is more efficient than̂θ2 if the asymptotic variance matrix of̂θ1

is smaller than that of̂θ2 in the order on positive-definite matrices.

(a) Joint double robustness:(µ̂0, µ̂1, . . . , µ̂J−1) remains consistent if either model (19) or model
(20) is correctly specified.

(b) Joint local efficiency:(µ̂0, µ̂1, . . . , µ̂J−1) attains the semiparametric variance bound if both
model (19) and model (20) are correctly specified.

(c) Joint improved local efficiency:(µ̂0, µ̂1, . . . , µ̂J−1) is at least as efficient as{µ̂0(α0), µ̂1(α1),
. . . , µ̂J−1(αJ−1)} if model (20) is correctly specified, wherêµt(αt) = Ẽ[RtY/π(t,X)−
{Rt/π(t,X)− 1}m(t,X; αt)] for αt a vector of arbitrary constants (t ∈ T ).

(d) Joint intrinsic efficiency: (µ̂0, µ̂1, . . . , µ̂J−1) is at least as efficient as{µ̂0(b0), µ̂1(b1),
. . . , µ̂J−1(bJ−1)} if model (20) is correctly specified, wherêµt(bt) = Ẽ[RtY/π̂ML (t,X)−
bT
t {Rt/π̂ML (t,X)− 1}υ̂(t,X)] for bt a vector of arbitrary constants (t ∈ T ).

(e) Joint population boundedness:µ̂t is population-bounded for eacht ∈ T .
(f) Joint sample boundedness:µ̂t is sample-bounded for eacht ∈ T .

Joint double robustness, local efficiency, or population or sample boundedness is equivalent to
the fact that̂µt satisfies the corresponding property for eacht ∈ T . However, joint intrinsic or
improved local efficiency is respectively more stringent than the fact that for eacht ∈ T , µ̂t

satisfies intrinsic or improved local efficiency.
The comparison in Table 1 remains applicable except for one correction, if the estimators are

replaced by the joint estimators of(µ0, µ1, . . . , µJ−1) and the properties are replaced by those on
the joint behavior. See Sections 5·3–5·4 for a description of the likelihood and regression estima-
tors. The correction is that none of the joint estimators satisfies joint improved local efficiency,
although Table 1 is still valid regarding whether or not the estimators ofµt satisfy improved local
efficiency marginally. See Tan (2008, Section 3) for a further discussion.
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Note that(µ̂t,IPW,ext)t∈T satisfies joint intrinsic efficiency becauseυ̂(j, X)/π̂ML(j, X), j ∈ T ,
are simultaneously included as extra linear predictors forlog{π(t,X)/π(0, X)} for eacht 6= 0
in model (22). For fixedj 6= 0, if model (22) were specified such thatlog{π(t,X)/π(0, X)} =
νT
2tf(X) if t 6= 0 or j, or νT

1j,j υ̂(j, X)/π̂ML (j, X) + νT
2jf(X) if t = j, thenµ̂j,IPW,ext would sat-

isfy intrinsic efficiency marginally, but(µ̂t,IPW,ext)t∈T would not satisfy joint intrinsic efficiency.
See Tan (2007, Section 3) for a related discussion.

5·3. Non-doubly-robust likelihood estimator
We present the likelihood estimator of Tan (2006) in the setup of causal inference, with the

extension to accommodate discrete, binary or non-binary, treatments. See a 2007 Rutgers Uni-
versity technical report by Tan for a further extension to deal with marginal and nested structural
models. The nonparametric likelihood of(Xi, Ti, Yi), i = 1, . . . , n, is

L1 × L2 =
n∏

i=1

π(Ti, Xi; γ) ×
n∏

i=1

GTi({Xi, Yi}),

whereGt is the joint distribution of(X, Yt), t ∈ T . MaximizingL1 leads to the maximum like-
lihood estimator̂γML . Recall thatm̂(t, x) is an estimator ofm(t, x) based on model (19) and
υ(t, x) = {1, m̂(t, x)}T. Let ĥ = (ĥT

1 , ĥT
2 )T andĥ1 = (ĥT

10, ĥ
T
11, . . . , ĥ

T
1,J−1)

T where

ĥ1j(t, x) = [1{t = j} − π̂ML (t, x)]υ̂(j, x) (j ∈ T ), ĥ2(t, x) =
∂π

∂γ
(t, x; γ̂ML).

By construction,
∑

t∈T ĥ(t, x) ≡ 0 because
∑

t∈T π̂ML (t, x) ≡ 1. We choose to ignore the fact
that Gt, t ∈ T , induce the same marginal distribution ofX, and retain only the constraints∑

t∈T
∫

ĥ(t, x) dGt = 0, i.e.,

0 =
∑

t∈T

∫
[1{t = j} − π̂ML (t, x)] dGt (j ∈ T ),

0 =
∑

t∈T

∫
[1{t = j} − π̂ML (t, x)]m̂(j, x) dGt (j ∈ T ),

0 =
∑

t∈T

∫
∂π

∂γ
(t, x; γ̂ML) dGt.

Furthermore, we require thatGt be a probability measure supported on{(Xi, Yi) : Ti = t, i =
1, . . . , n} and hence

∫
dGt = 1, t ∈ T . MaximizingL2 subject to these constraints leads to the

estimators that ifTi = t then

Ĝt({Xi, Yi}) =
n−1

ω(t,Xi; λ̂)
,

where ω(t,X; λ) = π̂ML(t, X) + λTĥ(t,X), λ̂ = argmaxλ `(λ), and `(λ) = Ẽ[log{ω(T,X;
λ)}]. The function`(λ) is finite and concave on the set{λ : ω(Ti, Xi;λ) > 0, i = 1 . . . , n}.
Moreover,̀ (λ) is strictly concave and bounded from above, and hence has a unique maximum,
if and only if {λ : λTĥ(Ti, Xi) ≥ 0, i = 1 . . . , n} is empty. This proposition follows in a similar
manner as that concerning`(λ) and condition (4) in Section 3·2.

The estimatorŝGt, t ∈ T , are similar toĜ1 in Section 3·2. If J = 2, π̂ML (1, X) is identified
asπ̂ML (X), ĥ10 is removed in̂h, and the constraint

∫
dG0 = 1 is cancelled, then̂G1 reduces to

exactlyĜ1 in Section 3·2. For causal inference,̂Gt, t ∈ T , are equally of interest and constrained
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as probability measures. In contrast, onlyĜ1, but notĜ0, is of interest and constrained as a
probability measure in the missing data setup.

Setting the gradient of̀(λ) to 0 shows that̂λ is a solution to

0 = Ẽ

{
ĥ(T,X)

ω(T, X; λ)

}
, (23)

or equivalently0 =
∑

t∈T
∫

ĥ(t, x) dĜt. The resulting estimator ofµt is

µ̂t,LIK =
∫

yt dĜt = Ẽ

{
RtY

ω(T,X; λ̂)

}
.

We derive the following asymptotic expansions forλ̂ andµ̂t,LIK , allowing for misspecification of
model (19) and model (20), similarly as in Section 3·2. Under regularity conditions,̂λ converges
to a constantλ∗ with the expansion̂λ− λ∗ = B̂−1Ẽ{ĥ(T,X)/ω(T, X;λ∗)}+ op(n−1/2).
Moreover,µ̂t,LIK has the expansion

µ̂t,LIK = Ẽ

{
RtY

ω(t, X; λ∗)

}
− ĈT

t B̂−1Ẽ

{
ĥ(T,X)

ω(T, X;λ∗)

}
+ op(n−1/2),

where B̂ = Ẽ{h(T, X)ĥT(T, X)/ω2(T,X; λ∗)} and Ĉt = Ẽ{RtY/ω2(T, X; λ∗)}. If model
(20) is correctly specified, thenλ∗ = 0 and henceµ̂t,LIK is asymptotically equivalent
to the first order to µ̂t,REG = Ẽ(η̂t)− ĈT

t B̂−1Ẽ(ξ̂), where η̂t = RtY/π̂ML(T, X), ξ̂ =
ĥ(T, X)/π̂ML (T, X), B̂ = Ẽ(ξ̂ξ̂T), andĈt = Ẽ(ξ̂η̂t).

5·4. Doubly robust likelihood estimator
The estimatorµ̂t,LIK is sample-bounded and locally and intrinsically efficient marginally.

Moreover,(µ̂0,LIK , µ̂1,LIK , . . . , µ̂J−1,LIK ) satisfies joint intrinsic efficiency. However,µ̂t,LIK is not
doubly robust. We propose a robustfication ofµ̂t,LIK such that the resulting estimator ofµt satis-
fies double robustness in addition to sample boundedness and local and intrinsic efficiency, and
the joint estimator satisfies joint intrinsic efficiency.

For our derivation, rewritêh(t, x) as

ĥ(t, x) = ~̂(t, x)− π̂ML (t, x)
∑

j∈T
~̂(j, x), (24)

where~̂ = (~̂T
1 , ~̂T

2 )T, ~̂2 is defined the same aŝh2, but ~̂1 is defined aŝh1 with ĥ1j(t, x) re-
placed bŷ~1j(t, x) = 1{t = j}υ(j, x), j ∈ T . Instead of (23), consider the system of estimating
equations

0 = Ẽ

{
~̂(T,X)

ω(T,X;λ)
−

∑

t∈T
~̂(t,X)

}
, (25)

i.e., 0 = Ẽ[{Rt/ω(T, X; λ)− 1}υ̂(t, X)], t ∈ T , and0 = Ẽ{~̂2(T,X)/ω(T, X;λ)}. In retro-
spect, the vector of estimating functions~̂(T, X)/ω(T, X; λ)−∑

t∈T ~̂(t,X) in (25) equals
ĥ(T, X)/ω(T,X; λ) in (23) left-multiplied by the matrixI −∑

t∈T ~̂(T, X)λT, whereI is
the appropriate identity matrix. Let̃λ be a solution to (25) subject to the constraint that
ω(Ti, Xi;λ) > 0 (i = 1, . . . , n) and letµ̃t,LIK = Ẽ{RtY/ω(T,X; λ̃)}.
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We derive the following asymptotic expansions forλ̃ and µ̃t,LIK , allowing for misspecifica-
tion of model (19) and model (20), similarly as in Section 3·3. Under regularity conditions,
λ̃ converges to a constantλ† with the expansioñλ− λ† = B̂T−1Ẽ{~̂(T, X)/ω(T, X; λ†)−∑

t∈T ~̂(T, X)}+ op(n−1/2). Moreover,µ̃t,LIK has the expansion

µ̃t,LIK = Ẽ

{
RtY

ω(t,X; λ†)

}
− ĈT

t B̃T−1Ẽ

{
~̂(T, X)

ω(T, X; λ†)
−

∑

t∈T
~̂(T, X)

}
+ op(n−1/2),

where B̃ = Ẽ{h(T, X)~̂T(T, X)/ω2(T, X; λ†)}. If model (20) is correctly specified, then
λ† = 0 and hencẽµt,LIK is asymptotically equivalent to the first order tõµt,REG = Ẽ(η̂t)−
ĈT

t B̃T−1Ẽ(ξ̂), where ζ̂ = ~̂(T,X)/π̂ML(T, X) and B̃ = Ẽ(ξ̂ζ̂T). The estimatorŝµt,REG and
µ̃t,REG are similar toµ̂REG and µ̃REG respectively. Both estimators are locally and intrinsically
efficient, butµ̃t,REG is doubly robust whereaŝµt,REG is not.

The estimator̃µt,LIK is similar to µ̃LIK , satisfying double robustness, local and intrinsic effi-
ciency, and sample boundedness but suffering from subtle limitations. As discussed in Section
3·3, it is difficult to study the existence of̃λ in theory and to computẽλ effectively in practice.
Alternatively, consider the following two-step estimator. Rewriteĥ1 as(ĥT

1t, ĥ
T

1(t))
T, whereĥ1(t)

consists of the elements ofĥ1 except̂h1t.

(a) Computêλ = (λ̂T
1t, λ̂

T

1(t), λ̂
T
2 )T, partitioned according tôh = (ĥT

1t, ĥ
T

1(t), ĥ
T
2 )T.

(b) Computẽλ(t)
step2= (λ̃T

1t,step2, λ̂
T

1(t), λ̂
T
2 )T, whereλ̃1t,step2= argmaxλ1t

κ1(λ1t) and

κ1(λ1t) = Ẽ

[
Rt

log{ω(t,X; λ1t, λ̂1(t), λ̂2)} − log{ω(t,X; λ̂)}
1− π̂ML(t,X)

− λT
1tυ̂(t,X)

]
.

The function κ1(λ1t) is finite and concave on the set{λ1t : ω(t,Xi;λ1t, λ1(t), λ̂2) >
0 if Ti = t, i = 1, . . . , n}. Moreover, κ1(λ1t) is strictly concave and bounded from above,
and hence has a unique maximum, if and only if{λ1t : λT

1tυ̂(t,Xi) ≥ 0 if Ti = t, i =
1, . . . , n, andẼ{λT

1tυ̂(t, X)} ≤ 0} is empty. This proposition follows in a similar manner as
that concerningκ1(λ1) and condition (12) in Section 3·3.

Setting the gradient ofκ1(λ1t) to 0 shows that̃λ1t,step2 is a solution to

0 = Ẽ

[{
Rt

ω(t, X; λ1t, λ̂1(t), λ̂2)
− 1

}
υ̂(t,X)

]
. (26)

The resulting estimator ofµt is

µ̃t,LIK2 = Ẽ

{
RtY

ω(T, X; λ̃(t)
step2)

}
.

The estimator̃µt,LIK2 , like µ̃LIK2 , is sample-bounded and doubly robust due to equation (26).
Furthermore,µ̃t,LIK2 is asymptotically equivalent to the first order tôµt,LIK and µ̃t,LIK if
model (20) is correctly specified. Therefore,µ̃t,LIK2 satisfies local and intrinsic efficiency and
(µ̃0,LIK2 , µ̃1,LIK2 , . . . , µ̃J−1,LIK2) satisfies joint intrinsic efficiency. The foregoing results are valid
for a general choice of̂m(t,X). For the choicem̂(t,X) = m̃RV(t,X), the resulting estimator
µ̃t,LIK2 satisfies improved local efficiency marginally, although(µ̃0,LIK2 , µ̃1,LIK2 , . . . , µ̃J−1,LIK2)
does not satisfy joint improved local efficiency.
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In the case ofJ = 2, we relateµ̃t,REG to the doubly robust regression estimator of Tan (2006)
and then derive a robustification ofµ̂t,LIK such thatµ̃t,LIK and the resulting estimator are sim-
ilarly related. First, the regression estimator ofµt in Tan (2006) isẼ(η̂t)− ĈT

t B̃T−1
t Ẽ(ξ̂),

where B̃t = Ẽ(ξ̂ζ̂T
t ), and ζ̂0 or ζ̂1 is defined asζ̂ with ~̂(t, x) replaced by~̂(0)(t, x) =

−1{t = 0}/π̂ML (0, x)ĥ(0, x) or ~̂(1)(t, x) = 1{t = 1}/{1− π̂ML(1, x)}ĥ(1, x). The functions
~̂(0) and ~̂(1), like ~̂, are mapped tôh by (24). A benefit of usinĝζt is that B̃t is symmet-
ric and negative-semidefinite. If{λ : λTĥ(t, Xi) = 0 if Ti = t, i = 1, . . . , n} is empty, thenB̃t

is negative-definite. Second, substitution of~̂(1) for ~̂ in (25) yields0 = Ẽ[{R1/ω(1, X;λ)−
1}ĥ(1, X)/{1− π̂ML(1, X)}], which is equivalent to setting to 0 the gradient ofκ(1)(λ) =
Ẽ([R1 log{ω(1, X; λ)} − λTĥ(1, X)]/{1− π̂ML(1, X)}). This system of estimating equations
is similar to (8) and (18) andκ(1)(λ) is similar toκ(λ) in Section 4·5. Therefore, it is numeri-
cally convenient to redefinẽλ as a maximizer toκ(1)(λ). The modified estimator̃µ1,LIK provides
a one-step alternative tõµ1,LIK2 , which involves two steps of maximization. Substitution of~̂(0)

for ~̂ in (25) leads to similar results. However, this modification ofµ̃t,LIK is not feasible forJ > 2.
In general, there exists no function like~̂(0) and~̂(1) that is mapped tôh by (24) and of the form
1{t = j}φ(x) for fixed j ∈ T andφ(x) a vector of functions ofx.

6. SIMULATION STUDY

To compare estimators, we conduct a simulation study with the same design as in
Kang & Schafer (2007). LetX = (X1, X2, X3, X4)T, Y = 210 + 27·4X1 + 13·7X2 +
13·7X3 + 13·7X4 + ε, and T = 1{U ≤ expit(−X1 + 0·5X2 − 0·25X3 − 0·1X4)}, where
(X1, X2, X3, X4, ε, U) are mutually independent,(X1, X2, X3, X4, ε) are marginally
normally distributed with mean 0 and variance 1, andU is uniformly distributed on
(0, 1). Let W = (W1,W2,W3, W4)T, W1 = exp(0·5X1), W2 = X2/{1 + exp(X1)}+ 10,
W3 = (0·04X1X3 + 0·6)3, andW4 = (X2 + X4 + 20)2. Consider the following models: (a)
E(Y | T = t,X) = α0t + αT

1tX for t = 0, 1; (b) E(Y | T = t,X) = α0t + αT
1tW for t = 0, 1;

(c) P (T = 1 | X) = expit(γ0 + γT
1 X); (d) P (T = 1 | X) = expit(γ0 + γT

1 W ). Models (a) and
(c) are correctly specified, whereas (b) and (d) are misspecified.

We first investigate 22 estimators ofµ1 in the missing data setup. The observed data consist of
realizations of(X,T, TY ). The 22 estimators are labelled as follows:

(1–3)µ̂LIK,OLS, µ̂REG,OLS, µ̃REG,OLS (Sections 3·2 and 4·5);
(4–7)µ̂AIPW (ratio), µ̂OLS,ext, µ̂WLS, µ̃RV (Section 2·3);
(8–12)µ̂IPW,ext (ratio),µ̃IPW,ext2, µ̂AIPW,ext (ratio),µ̂WLS,ext (ratio),µ̂WLS,ext2 (Sections 2·3 and 4·4);
(13–15)µ̂TIPW (ratio), µ̂TML , µ̂TAIPW (ratio) (Section 2·3);
(16–22)µ̂AIPW,lik , µ̃LIK2,OLS, µ̂WLS,lik, µ̂WLS,lik2, µ̃LIK2,WLS, µ̃RV,lik , µ̃LIK2,RV (Sections 3·3 and 4·3).

The estimator̃µREG,OLS is taken as the doubly robust regression estimator of Tan (2006). The six
estimators marked by ratio in brackets are defined in the form ofµ̂ratio(π̂, m̂), instead of̂µ(π̂, m̂).

Figure 1 presents the boxplots of 13 estimators from 5000 Monte Carlo samples of sizen =
1000. The realizations of each estimator are censored within the range ofy-axis, and the number
of realizations that lie outside the range are indicated next to the lower and upper limits of
y-axis. The 13 estimators perform differently mainly in the cases where the propensity score
model is correct but the outcome regression model is misspecified and where both models are
misspecified. The upper half of Table 2 presents the ratios of mean squared errors of the 13
estimators again estimator 22 in these two cases forn = 200 and 1000.
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Fig. 1. Boxplots of estimators ofµ1 − 210 (n = 1000)
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Fig. 2. Boxplots of estimators ofµ1 − µ0 (n = 1000)
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Table 2.Ratios of mean squared errors
Estimator 1 2 3 6 7 10 11 12 14 15 17 20 22

Estimators ofµ1 in missing data setup
C-PS&M-OR 1·23 1·28 1·20 1·32 1·07 1·39 1·25 1·24 1·51 1·35 1·24 1·17 1·00

1·21 1·21 1·20 1·36 1·07 1·75 1·33 1·20 1·80 1·49 1·21 1·13 1·00
M-PS&M-OR 1·32 1·50 1·34 1·62 1·12 1·87 1·31 1·30 1·32 1·12 1·27 1·20 1·00

1·10 1·31 1·27 2·82 1·24 4·86 1·78 1·99 1·21 1·04 1·31 1·27 1·00

Estimators ofµ1 − µ0 in causal inference setup
C-PS&M-OR 1·97 1·79 2·76 4·50 1·85 5·00 3·27 3·16 19·8 18·1 2·65 1·87 1·00

3·80 3·58 4·05 9·08 2·33 11·7 5·42 4·17 134 130 4·07 2·58 1·00
M-PS&M-OR 1·77 1·77 2·51 2·75 1·46 2·39 1·87 1·82 2·91 2·42 1·88 1·74 1·00

2·02 2·22 73·3 3·99 1·77 3·42 2·08 2·16 3·97 3·72 2·07 1·87 1·00

C-PS (or M-PS): correct (or misspecified) propensity score model; M-OR: misspecified outcome regression model;
Each cell gives the ratios of mean squared errors forn = 200 (upper) andn = 1000 (lower).

Among the estimators not shown, estimator 16 performs similarly as 17, estimators 18–19
similarly as 20, and estimator 21 similarly as 22. Estimators 4–5 perform overall poorly as in
Kang & Schafer (2007, Tables 5 and 8). Estimator 8 yields outlying values in all the four cases
whether the outcome regression model and the propensity score model are correct or misspeci-
fied. Estimators 9 and 13 improve upon estimator 8 when the propensity score model is correct,
but still perform poorly when the propensity score model is misspecified.

The robustified likelihood estimators 16–22 provide the best performances for all the settings
under study. Among these seven estimators, estimators 21–22 perform noticeably better than
estimators 16–20 due to smaller variances when the propensity score model is correct but the
outcome regression model is misspecified and due to smaller biases when both models are mis-
specified. The variance reduction in the first case reflects the result that estimators 21–22, but not
estimators 16–20, are improved-locally efficient.

Estimators 1–3 have mean squared errors in the range of those of estimators 16–20 for all the
settings. However, estimator 1 is not doubly robust and hence the fact that it is nearly unbiased
when the outcome regression model is correct but the propensity score model is misspecified is
not theoretically guaranteed. Estimators 2–3 yield outlying values when both models are mis-
specified, possibly because they are not bounded.

Estimators 6 and 10–12 have mean squared errors higher than the range of those of estimators
16–20 when the propensity score model is correct but the outcome regression model is misspeci-
fied and when both models are misspecified. The differences between estimator 16 and estimator
10 usingm̂OLS and between estimators 18–19 and estimators 6 and 11–12 usingm̂WLS indicate
the advantage of using the extended propensity scoreω̂ overπ̂ML andπ̂ext.

Estimator 7 has mean squared errors slightly smaller than those of estimators 16–20 but still
greater than those of estimators 21–22 when the propensity score model is correct but the out-
come regression model is misspecified and when both models are misspecified. This comparison
agrees with the facts that estimators 7 and 21–22 are improved-locally efficient usingm̃RV, but
estimators 21–22 are further intrinsically efficient and bounded.

Estimators 14–15 improve upon related estimators 4–5, but still perform overall worse than
estimators 16–22. Particularly, estimators 14–15 have considerable biases when the propensity
score model is correctly specified but the outcome regression model is misspecified.

For the causal inference setup, Figure 2 presents the boxplots of 13 estimators ofµ1 − µ0 for
n = 1000 and the lower half of Table 2 presents the ratios of mean squared errors forn = 200
and 1000. The relative performances of the estimators are overall similar to those in the missing
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data setup. However, there are interesting new patterns. The reduction in mean squared errors
by using estimators 21–22 over other estimators becomes more substantial than in the missing
data setup when the propensity score model is correct but the outcome regression model is mis-
specified and when both models are misspecified. Estimators 2–3 yield an increased number of
outlying values when the propensity score model is misspecified. Estimators 10–11 yield an in-
creased number of outlying values except when both models are correct. Estimators 14–15 have
increased biases when the outcome regression model is misspecified.
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APPENDIX 1

Technical details

Condition (4) for`(λ). The claim holds by the following results. LetΛ1 = {λ : λTĥ(Xi) = 0, i =
1, . . . , n} andΛ2 = {λ : λTĥ(Xi) ≥ 0 if Ri = 1 andλTĥ(Xi) ≤ 0 if Ri = 0, i = 1, . . . , n}. First, if Λ1

is empty, theǹ (λ) is strictly concave. Otherwise, there exists someχ such thatχT(∂2`/∂λ∂λT)χ
= −Ẽ{ω−2R(χTĥ)2 +(1− ω)−2(1−R)(χTĥ)2} = 0. ThenχTĥ(Xi) = 0 for i = 1, . . . , n, a contra-
diction. Second, ifΛ2 is empty, theǹ (λ) is bounded from above. Otherwise, there exists a sequence
of pairs (ck, χk), where ck > 0 and χk is a unit vector, such that̀(ckχk) →∞ as k →∞. Then
ck →∞. By compactness of the unit ball, there exists a unit vectorχ0 such thatχk → χ0 ask →∞. For
i = 1, . . . , n with Ri = 1, letting k →∞ in χT

k ĥ(Xi) > −π̂ML (Xi)/ck yieldsχT
0 ĥ(Xi) ≥ 0. Similarly,

for i = 1, . . . , n with Ri = 0, letting k →∞ in χT
k ĥ(Xi) < {1− π̂ML (Xi)}/ck yields χT

0 ĥ(Xi) ≤ 0.
Third, if there exists someχ ∈ Λ1, then`(λ + cχ) is linear inc and hencè(λ) is not strictly concave. If
there exists someχ ∈ Λ2 butχ /∈ Λ1, then`(λ + cχ) →∞ asc →∞ and hence is unbounded.

Condition (12) forκ1(λ1). The claim holds by the following results. LetΛ1 = {λ1 : λT
1 υ̂(Xi) =

0 if Ri = 1, i = 1, . . . , n} and Λ2 = {λ1 : λT
1 υ̂(Xi) ≥ 0 if Ri = 1, i = 1, . . . , n, and Ẽ{λT

1 υ̂(X)} ≤
0}. First, if Λ1 is empty, thenκ1(λ1) is strictly concave. Otherwise, there exists someχ such
that χT(∂2κ1/∂λ1∂λT

1 )χ = −Ẽ{ω−2R(1− π̂ML )(χTv̂)2} = 0. Then χTv̂(Xi) = 0 for i = 1, . . . , n
with Ri = 1, a contradiction. Second, ifΛ2 is empty, thenκ1(λ1) is bounded from above. Other-
wise, there exists a sequence of pairs(ck, χk), where ck > 0 and χk is a unit vector, such that
κ1(ckχk) →∞ as k →∞. Then ck →∞. By compactness of the unit ball, there exists a unit vec-
tor χ0 such thatχk → χ0 as k →∞. For i = 1, . . . , n with Ri = 1, letting k →∞ in χT

k ĥ1(Xi) >

−{π̂ML (Xi) + λ̂T
2 ĥ2(Xi)}/ck yieldsχT

0 υ̂(Xi) ≥ 0. Moreover,Ẽ{χT
0 υ̂(X)} ≤ 0. Otherwiseκ1(ckχk) =

ckẼ(R[log{ω(X; ckχk, λ̂2)} − log{ω(X; λ̂)}]/(1− π̂ML )/ck − χT
k υ̂) → −∞ ask →∞. Third, if there

exists someχ ∈ Λ1, thenκ1(λ1 + cχ) is linear inc and henceκ1(λ1) is not strictly concave. If there exists
someχ ∈ Λ2 butχ /∈ Λ1, thenκ1(λ1 + cχ) →∞ asc →∞ and hence is unbounded.

Asymptotic expansion ofµ̃LIK2 . Let χ̃ = λ̃1,step2− λ̂1. Then ω(X; λ̃step2) = ω(X; λ̂1 + χ̃, λ̂2).
Under regularity conditions,χ̃ converges to a constantχ† in probability with the expansion
χ̃− χ† = B̃T−1

1 Ẽ[{R/ω(X; λ̂1 + χ†, λ̂2)− 1}υ̂(X)] + op(n−1/2), where B̃1 = Ẽ[{R/ω2(X; λ̂1 +
χ†, λ̂2)}ĥ1(X)υ̂T(X)]. Moreover, a Taylor expansion ofµ̃LIK2 aboutχ† yields

µ̃LIK2 = Ẽ

{
RY

ω(X; λ̂1 + χ†, λ̂2)

}
− ĈT

1 B̃T−1
1 Ẽ

[{
R

ω(X; λ̂1 + χ†, λ̂2)
− 1

}
υ̂(X)

]
+ op(n−1/2),

whereĈ1 = Ẽ[{RY/ω2(X; λ̂1 + χ†, λ̂2)}ĥ1(X)]. If model (2) is correctly specified, thenχ† = 0, and
Ẽ[{R/ω(X; λ̂)− 1}υ̂(X)] = op(n−1/2) by the discussion in Section 4·2. The foregoing expansion re-
duces tõµLIK2 = µ̂LIK + op(n−1/2).



1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

22 Z. TAN

Condition (16) forJ 1(ν1). The proof is similar to that forκ1(ν1) and condition (12). LetΛ1 =
{ν1 : νT

1 υ̂(Xi) = 0 if Ri = 1, i = 1, . . . , n} and Λ2 = {ν1 : νT
1 υ̂(Xi) ≥ 0 if Ri = 1, i = 1, . . . , n, and

Ẽ{(1−R)νT
1 υ̂(X)} ≤ 0}. We only show that ifΛ2 is empty, thenJ 1(ν1) is bounded from above.

Otherwise, there exists a sequence of pairs(ck, χk), whereck > 0 and χk is a unit vector, such that
J 1(ckχk) →∞ ask →∞. Thenck →∞. By compactness of the unit ball, there exists a unit vectorχ0

such thatχk → χ0 ask →∞. ThenχT
0 υ̂(Xi) ≥ 0 for i = 1, . . . , n with Ri = 1. OtherwiseχT

k υ̂(Xi) < 0
for all sufficiently largek andJ 1(ckχk) → −∞ ask →∞. Moreover,Ẽ{(1−R)χT

0 υ̂(X)} ≤ 0. Other-
wiseJ 1(ckχk) ≤ −ckẼ{(1−R)χT

k υ̂(X)}, which goes to−∞ ask →∞.
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