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Econoroetiica, Vol. 66, No. 2 (March, 1998), 315-331 

ON THE ROLE OF THE PROPENSITY SCORE IN EFFICIENT 
SEMIPARAMETRIC ESTIMATION OF AVERAGE 

TREATMENT EFFECTS 

BY JINYONG HAHN' 

In this paper, the role of the propensity score in the efficient estimation of average 
treatment effects is examined. Under the assumption that the treatment is ignorable given 
some observed characteristics, it is shown that the propensity score is ancillary for 
estimation of the average treatment effects. The propensity score is not ancillary for 
estimation of average treatment effects on the treated. It is suggested that the marginal 
value of the propensity score lies entirely in the "dimension reduction." Efficient semi- 
parametric estimators of average treatment effects and average treatment effects on the 
treated are shown to take the form of relevant sample averages of the data completed by 
the nonparametric imputation method. It is shown that the projection on the propensity 
score is not necessar for efficient semiparametric estimation of average treatment effects 
on the treated even if the propensity score is known. An application to the experimental 
data reveals that conditioning on the propensity score may even result in a loss of 
efficiency. 

KEYWORDS: Treatment effect, propensity score, semiparametric efficiency hound. 

1. INTRODUCTION 

THE CENTRAL PROBLEM IN EVALUATION STUDIES is that any potential outcome 
that program participants would have received in the absence of the program is 
not observed. Let Di denote a dummy variable such that Di = 1 when treatment 
is given to the ith individual, and Di = 0 otherwise. Let Yoi and Yli denote 
potential outcomes when Di = 0 and Di = 1, respectively. We can then say that 
the treatment causes the outcome variable of the ith individual to increase by 
Yli - Yoi. Thus, Yli - Yoi can be called the treatment effect for the ith individ- 
ual. Individual treatment effects cannot be observed, though, because we only 
observe Di and Y mDitYi + (1 - D1)Y0i. Because of this missing data problem, 
attention has been focused on some parameters which can summarize the 
impact of the program in a meaningful way. Usually, the parameter of interest is 
formulated in terms of conditional means, presumably because the case for 
social experimentation implicitly assumes that the mean gain from program 
participation is the primary object of interest. See Heckman (1992), Clements, 

1 Previous versions of this paper have been circulated under the title "Efficient Semiparametric 
Estimation of the Average Treatment Effects from the Experimental Data." I appreciate helpful 
comments from Joshua Angrist, Gary Chamberlain, Whitney Newey, James Powell, Petra Todd, 
Fannie Tseng, Yoon Jae Whang, a co-editor, two anonymous referees, and seminar participants at 
Lehigh University, Northwestern University, Penn State University, and the 1996 North American 
Summer Meeting of the Econometric Society. Guido Imbens inspired this research and deserves a 
lot more than a usual thank you. Financial support has been provided by the Institute for Economic 
Research and the Research Foundation of the University of Pennsylvania. 
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Heckman, and Smith (1993), and Heckman and Smith (1995) for related discus- 
sion. Thus, the atverage treatnment effects 

3 _E[Yli -Yoi 

and the average treatnent effects on the treated 

y-E[Yli -Yoi IDi = 1], 

have received a lot of attention in the literature. For example, Heckman, 
Ichimura, Smith, and Todd (1995) and Todd (1995) considered the mean impact 
of job training (for the program participants) on earnings. Angrist (1995a) 
considered the mean impact of military service (for veterans) on civilian earn- 
ings. In a related context, Imbens and Angrist (1994) reinterpreted the IV 
estimator as the estimator of some local average treatment effects. 

Problems of sample selection are common in evaluation studies. Traditionally, 
two main approaches have been used in the literature to control for the bias: 
regression-based "control function" methods, predominantly used in economet- 
rics, and "matching" methods, mainly used in statistics. A common feature of 
both approaches is that the conditional probability of program participation 
given some observed characteristics, often called the propensity score, plays a 
crucial role in controlling bias to obtain the estimator of the impact of the 
program. Many estimators proposed in the econometric literature for evaluating 
the impact of a social program rely on estimates of this propensity score to 
control for systematic differences between treatment and comparison groups. 
Examples include Heckman, Ichimura, Smith, and Todd (1995), Todd (1995), 
and Angrist (1995a, b). The critical role played by the propensity score in the 
literature is often motivated by Rosenbaum and Rubin's (1983, 1984) argument. 
They showed that if (i) there exists a variable Xi (which is always observed) such 
that Di is ignorable given Xi, i.e., Di and (Yoi,Y1I) are independent of each 
other given Xi; and (ii) 0 < P[Di = 1 IXi] < 1 for all Xi; then Di and (Yoj, Y11) 
are independent of each other given the propensity score 

p(x) -P[Di = 1 Xi =x]. 

This in particular implies that E[jyi p(Xi)] = E[Y IDi = 1, p(Xi)] for j = 0,1, and 
hence, 

/3 = E{E[Y IDi = 1, p(X)] -E[Y IDi = 0, p(X,)]1 

Also observe that conditioning on Xi has the same effect: 

3 = E{E[YJ IDi = 1, Xi] -E[Y IDi = 0, Xi]. 

These observations suggest that a consistent estimator of /3 may be constructed 
as a sample average of 

E[YiDi = 1,p(Xi)]-E[Y Di = O,p(Xi)] or 
rl^a Ara 
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where E[Y Di, p(Xi)] and E[Yi Di, Xi] denote some nonparametric estimators 
of Yi given (Di, p(Xi)) and (Di, Xi), respectively. Similar observation suggests 
that a consistent estimator of y may be constructed as a sample average of the 
same object over the subsample where Di = 1. But because conditioning on the 
unitzuariate propensity score fully controls for the bias, and because the estima- 
tion of conditional distribution is more difficult when the dimension of the 
conditioning variable is large due to the curse of dimensionality, this "dimension 
reduction" has led many to focus on more reliable estimation of the propensity 
score. 

The purpose of this paper is to consider the efficient estimation of /3 and -y 
when the treatment is ignorable given observed characteristics, and to examine 
the role of the propensity score from an efficiency point of view. This problem is 
not a standard parametric problem because the distribution of (Yoi, Yli) is not 
parametrically specified. The semiparametric efficiency bound, introduced by 
Stein (1956), and developed by Begun, Hall, Huang, and Wellner (1983) and 
Bickel, Klaassen, Ritov, and Wellner (1993), among others, provides the semi- 
parametric analog of the Cramer-Rao lower bound. See Newey (1990), for 
example, for a review on this subject. I calculate the semiparametric efficiency 
bounds under various assumptions and develop estimates whose asymptotic 
variances achieve these bounds. It turns out that the propensity score p(x) is 
ancillci;y for the estimation of /3: the efficiency bound for /3 under the knowl- 
edge of the propensity score is the same as the one without knowledge of the 
propensity score. The knowledge of the propensity score does decrease the 
asymptotic variance bound for , though. I provide a heuristic argument that 
this added information can be solely attributed to the "dimension reduction" 
feature of the propensity score. 

I show that conditioning on the propensity score is not necessai^y and may 
even be harmful for the efficient estimation of /8 and y. For the case where the 
propensity score is not known, I construct efficient estimators which take the 
forms of some relevant sample averages of the data completed by the nonpara- 
metric impittation] method based on the nonparametric regression Xi. Even 
when the propensity score is known, in which case the asymptotic variance 
bound for y is smaller when compared to the case where the propensity score is 
not known, it is found that the projection on the propensity score is not 
necessaiy to achieve the semiparametric efficiency bound. It is then found that 
conditioning on the propensity score results in a loss of efficiency in the case of 
experimnental datC. 

2. EFFICIENCY BOUNDS 

In this section, I calculate the semiparametric efficiency bounds of /3 and y 
and examine the role of the propensity score in efficient estimation. Knowledge 
of the propensity score is shown to add no additional information for estimation 
of /3, and hence, the propensity score is ancillaiy for /3. For the estimation of -y, 
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I argue that the marginal value of the propensity score is concentrated solely on 
the dimension reduction feature. 

Assume that the treatment is ignorable give some covariates Xi. Our data set 
consists of (Di, Yi, Xi) i = 1,..., n, where YX-DiY1i + (1 - Di)Yoi. Notice that we 
observe only one of Yoi and Y1i. Our objects of interest are the average 
treatment effects /3 and the average treatment effects on the treated 'y. The 
asymptotic variance bounds for /3 and y are calculated in the following theorem. 
The semiparametric asymptotic variance bound provides the semiparametric 
analog of the Cramer-Rao lower bound: no regular estimator sequence has a 
smaller asymptotic variance. 

THEOREM 1: Under the assumption that (Yoi, Y1i) I Di IXi, the asymptotic vari- 
ance bounds for /3 and y are 

E- 2r(Xi) cr 2(Xi)1 
E I I~~~ 1 ,( l ,) 

p(X) 1 -p(Xd) + iJ-zI)J] 

and 

p (X)(J2(Xi) +P (Xi)2o02(Xi) (p(Xi) - Y )2p(Xi) 
(1) El 1 

1 
[ P2 p 2(I_ -p(Xi)) p 2 

respectively, where 

PI(Xi) = E[YliiXi], 

00(Xi) = E[ Yoi |Xi] 

/3(Xd) = p 1(X1) - 0(Xi), 

o-i2 (Xi) = var (Y, i Xi), 

?o 2 (Xi) = var(Yo i lXi), 

p = E[p(Xi)]. 

(Proof in Appendix.) 
To examine the role of the propensity score in efficient estimation of /3 and 

'y, consider the hypothetical situation where the propensity score p(-) is known 
while maintaining the assumption that (Yoi, Y1-) I Di Xi. The reduction in the 
asymptotic variance bounds due to this additional assumption would then 
indicate the role of propensity score from the efficiency point of view. 

THEOREM 2: Assume that (Yoi, Y1i) I Di Xi. Furthermore, assume that the 
propensity score pQ ) is known. The asymptotic ivariance bounds for /3 and y are 
then equal to 

- 2 (Xi) - p X)(Xi) 
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and 

Ep(Xi)l2(Xi) p(Xi) 2o02(Xi) ( /(Xi) -y)2p2(X.) 
2 p2 p2(1 _p(Xi)) p2, 

respectively. 

(Proof in Appendix.) 
A comparison of asymptotic variance bounds in Theorems 1 and 2 shows that 

the propensity score does not play any role in the estimation of /3: the 
knowledge of the propensity score does not decrease the asymptotic variance 
bound. In this sense, the propensity score is ancillary for the estimation of /3. 
On the other hand, knowledge of the propensity score clearly plays some role 
for the estimation of y: it reduces the asymptotic variance bound by 

(,3(Xi) -_y) p(Xi)( -P(Xi)) 
(2) p 21 

which can be interpreted as the marginal value of the propensity score. Because 
the propensity score is not known in many realistic circumstances, this marginal 
value can only tell us the hypothetical marginal benefit. 

One might also ask the marginal value of the "dimension reduction" due to 
the propensity score. To be more specific, suppose that Xi has a continuous 
distribution, and the support r of Xi is a union of the equivalence classes ,, 
such that the propensity score is equal to a on each r?. Suppose that we can 
identify such equivalence classes, although we do not know the propensity score 
itself. Observe that the knowledge of such equivalence classes amounts to the 
"dimension reduction" often associated with Rosenbaum and Rubin (1983, 
1984). What is the marginal value of such knowledge? It is clear that knowledge 
of the equivalence classes should not add any information in estimation of /3: 
the marginal value (in terms of asymptotic variance bound) of the propensity 
score itself was zero. For the estimation of y, I do not yet know how to compute 
the efficiency bound under this generality. Instead, I consider a simple case 
which suggests that the marginal value of the propensity score entirely consists 
of the "dimension reduction." I consider an extreme example where the propen- 
sity score is constant over Z This is the case of random treatment assignment. 
Observe that / = y in this case. 

THEOREM 3: Assume that (Yoi, Y1i) I Di iXi. Furthermore, assume that the 
propensity score p0 ) is equal to some unknown constant p. The asymptotic variance 
bound for /3 = y is equal to 

4 + 1 _p +(2(Xi) -)j . 
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(Proof in Appendix.) 
Now, consider the variance bounds in Theorem 1 for the case where pQ) =p. 

We can see that the bound for /3 equals 

(3) E[ 0I( ,(' 
( B(X) - )2] 

and that for y equals 

o- 12(Xi) fo 2 (Xi) (P(Xi) _ 0) 
2 

(4) E+ + 1 
p I-p p 

These are the bounds if we do not know that the data are generated by the 
random treatment assignment. A comparison of (3) with the bound in Theorem 
3 suggests that the bound for /3 does not change even if we know that the data 
are generated by random treatment assignment. This is hardly surprising when 
viewed against Theorem 2: the marginal value of the propensity score, which in 
this case is the knowledge that the data are generated by the random treatment 
assignment and the knowledge of the probability of treatment, is zero for l3. 
Thus, the marginal value of the former knowledge should also be zero. Now, 
compare (4) with the bound in Theorem 3. The difference between them, 

E [ 
P 

( 8(Xi)- _') 
2 

indicates the marginal value (in the estimation of y) of the knowledge that the 
data are generated by the random treatment assignment, or the marginal value 
of the dimension reduction. It turns out that this marginal value equals (2) when 
p) =p. In other words, the marginal value (in the estimation of y) of the 
knowledge of the propensity score entirely consists of the marginal value of 
dimension reduction. 

3. EFFICIENT ESTIMATION 

Having calculated efficiency bounds for /3 and y, it is of interest to develop 
estimators which achieve these bounds. The estimators take the forms of some 
relevant sample averages from the data completed by the nonparametric impu- 
tation method based on the projection on Xi. I then consider estimation of 'y 
when the propensity score is known, in which case the asymptotic variance 
bound is decreased, and argue that conditioning on the propensity score is not 
necessary for efficient estimation. Finally, I argue that conditioning on the 
propensity score may even be harmful in efficient estimation by considering the 
random treatment assignment where the propensity score is constant, under 
which case projection on the propensity score is equivalent to taking the 
marginal expectation. 
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Notice that the original data set contains some missing values because only 
one of Y1i and Yoi are observed. If both were observed, then the sample average 
of the difference Yli - Yoi would consistently estimate /3, and the sample 
average of the difference Y1i -Yoi over a subsample where Di = 1 would 
consistently estimate y. 

The nonparametric imputation method imputes the missing values of Y1i and 
Yoi using their conditional expectation given Xi. In general, these conditional 
expectations are not identified. But the ignorability of Di given Xi helps us to 
identify them. Because we have 

E[DiYi IXiN] = E[DiY1i NX E[Di |Xi ]E[ Y1i NXi] = E[Di IXi] 31(Xi), 

we can identify 831(Xi) by E[DiY jX1]/E[Di X1]. Similarly, we can identify 
I30(Xi). Even though E[DjYiJXi], E[(1 -Dj)YiJXi], and E[DiJXi] are not exactly 
known in the sample, we can use various nonparametric regression techniques 
to consistently estimate them. Let E[DDiYi Xi], E[(1 - Di)Yi IXi], and E[Di XXi] 
denote the corresponding nonparametric regression estimators. We can then fill 
in the missing values of Y1i and Yoi by 

181(Xi)- ^1 ] and 830(Xi)-E[D IX1] 
EDii II-E[Di iXJ 

respectively. With this "nonparametric imputation," we have a "complete" data 
set, where we "observe" Yli DiYi + (1 - Di),31(Xi) under "treatment," and 
Yoi (1 - D)Y + D1 :30(Xi) under "control." Our "complete" data set thus 
consists of (Y11, Yoi0 Di, Xi), i = 1,. . . ,n, and we can estimate /3 and y by 

/3 1 E (Y -Yoi) and (1/n)jDi / - Oi) 

n i ~~~~~(1/n)LjDi 

Notice that we may consistently estimate /3 and y by the sample averages of 
,31(Xi) -,30(Xi) over the entire sample and over the subsample where Di = 1, 
respectively, if (,8j(X1),,30(X1)) were observed. Because they are not, we may 
use 

/3 n - ~ ( :1(Xi) - /30(Xi)) and 

(1/n)LjDi ( /31(Xi) - /0(Xi)) 

(1/n)LjDi 

instead. Because these estimators are based on the data set where the missing 
values of /31(Xi) and 830(Xi) are imputed by the nonparametric regression 
method, they can also be interpreted as nonparametric imputation based estima- 
tors. 
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If the estimators are 4ni-consistent and asymptotically normal, we can use 
Newey's (1994) argument to show that the asymptotic variances of nI( /- 3) 
and Fn( /3-,l3) are equal to each other and equal to 

E 2(x) X + (/(Xi) _ 8)2] 
p (Xi) 1 - p(Xi) 

Similarly, we can show that the asymptotic variances of H(jn - ry) and n? - ry) 
are equal to each other and equal to 

p(Xi)_2_(Xi) p(Xi) _ 2 +_ (2(X)- Xi) 
E 

pi2p 2 (I-pj(Xi)) p2 2. 

From Theorem 1, it follows that ,B and 13 are efficient for 13, and ry and r are 
efficient for y. 

PROPOSITION 4: Assume that (Yoi, Y1i) I D1 iXi. Then, 13 and 13 are efficient 
semiparametric estimators for /3, and j' and r are efficient semiparametric estima- 
tors for y. 

(Proof in Appendix.) 
Proposition 4 does not provide any regularity conditions. Neither does it tell 

us any specific nonparametric regression estimation to be used. In the case 
where Xi has a finite support, it is trivial to fill the gap. Notice that, if we can 
take 

YLiDiY> I(Xi =x) 
Ef DiYi IXi = x]= Li(XI - x) 

E[( -Di)YXi Ixi XI E( l(XD X=X) 

and 

EtD 1 (X, =X) 

E[Dj1Xi=x]= L1X=) 

the usual argument will establish the asymptotic distribution. 

THEOREM 5: Assume that (Yoi, Y1i) I Di [Xi. Furthermore, assume that Xi has a 
known finite support. Then, ,B and /3 are efficient semiparametric estimators for /3, 
and j' and r are efficient semiparametric estimators for y. 

(Proof omitted.) 
When Xi has a continuous distribution, we can choose a variety of nonpara- 

metric estimators. When these estimators are computed by the series estimation, 
we can find some regularity conditions under which the nonparametric imputa- 
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tion based estimators are asymptotically normal.2 To obtain a series estimator of 
E[LYIXi =x], for example, we take 

p (X) = (PK(X), , PKK(X)) , 

y = (Y1, ... ,Y1d I 

P K [ ppK(X1) ,-.p K(X )I] and 

E [ Yi Xi = x] = p K r ( X) * (p P PK)- , 

Let 

uii =DiYi -p(Xi)131(Xi), 

U2i = (1 -Di)Yi - (1 -p(X1))j80(Xj), 

U3i = Di -p(Xi)- 

THEOREM 6: Assume that (Yoi, Yli) I Di iXi. Furthermore, assume that: 
(i) E[ U2i [Xi] is bounded for k = 1, 2, 3; 
(ii) the support of Xi is a Cartesian product of compact intervals H> x1,j, xl,j]; 
(iii) the density of Xi is bounded below by C Fl 1K(x -x j)(x,,j - X)]V for some 

C > 0, and pkK(x) are the products of polynomials that are orthonormal with 
respect to NJ= K[(x - x,j)(x,,j - x)]v; 

(iv) p(x), j31(x), /30(x) are continuously differentiable of all orders; 
(v) K=n? for some e >0, and K7+4'/n -> 0. 
Then, /3 and /3 are efficient semiparametric estimators for /3, and j' and r are 

efficient semiparamnetric estimators for y. 

(Proof in Appendix.) 
It seems that imputation is unavoidable even for the experimental data 

case. Consider regressing Y - E[Yi IXi] on Di- E[Di IXi], where E[Y IXi] and 
E[Di jX] are some nonparametric estimators of E[YJ Xj] and E[DijX1]. Call 
this estimator /3SL. The probability limit of /3SL equals 

E[(Yj-EL Yi |Xi )(Di-EL Di|Xi ])] , 

E [(Di -E Ds i[Xi ])2] 

This is an estimator due to Robinson (1988) for the partially linear semipara- 
metric regression model. The asymptotic variance vara( /BSL) of /SL' computed 
using Newey's (1994) machinery, equals 

E[ -- ] +E[ I ( ] + ((l p -p) 3 wvar( /3(Xi)). 

2 In practice, it can be extremely difficult to construct a series PK1(.).. * PKK() such that 
Condition 3 in Theorem 6 is satisfied. This condition should thus be viewed as a "high level" 
assumption. I thank an anonymous referee who pointed it out. 
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Because 

vara(sL)-vara,(/i) = (P(1p) -4) var(/3(Xd))>O, 

/3SL is not an efficient estimator. 
It was seen that the propensity score is ancillaiy for estimation of /3. On the 

other hand, the propensity score is not ancillary for y, but its value is solely 
concentrated on the "dimension reduction" feature. Thus, it is of interest to ask 
whether the projection on the propensity score instead of Xi is necessary to 
attain the efficiency bound in the estimation of y. Although the propensity score 
is unknown in many realistic situations, many estimators in the literature use the 
nonparametric regression estimation of some conditional expectation on the 
propensity score to exploit the "dimension reduction" feature of the propensity 
score. I argue that an efficient estimator for y does not have to use the 
projection on the propensity score even when the propensity score is known. 
Because the sole value of the propensity score seems to be its "dimension 
reduction" feature, it can be inferred that the "dimension reduction" does not 
imply the necessity of the projection on the propensity score. 

PROPOSITION 7: Assume that (Yoi, Yli) I Di Xi. Furthermore, assume that the 
propensity score p0-) is known. Then, the estimator 

1 (E[ DiYAXi] E[(1- Dd)1yXi \x 1 
- P(Xd) I I - -p(Xd) n k E 2Di xi] 1 -E[D1 Xi] , n 

is efficient for the estimation of y. 

(Proof in Appendix.) 
I now argue that the projection on the propensity score may even be harmful 

for the estimation of 3 = y by considering the experimental data case. As for 
efficient estimation, we would want to use the estimator which is efficient when 
the propensity score is known, because the marginal role of the propensity score 
is purely contained in the "dimension reduction." Observe that /3, which is an 
efficient estimator for ,3 with or without the knowledge of the propensity score, 
is still efficient for /3. As for the estimation of y with the knowledge of the 
propensity score, we observe that the estimator developed in Proposition 7 
reduces to /3 when the propensity score is constant. Note that we would not 
want to use j', because it is efficient only when the propensity score is unknown 
and does not make use of the "dimension reduction." 

Now, consider the projection on the propensity score. Because the propensity 
score is a constant, the projection on the propensity is equivalent to the 
marginal expectation. Thus, the idea of conditioning on the propensity score 
leads us to consider the difference of the sample averages as our estimator. Call 
such an estimator oLS. It can easily be shown that the asymptotic variance 
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vara( OLS) of POLs equals 

LT(Xi) ](Xi) + var+ (X)) var(/30(Xi)) 

Comparing this with the asymptotic variance of /3 or /3, we find that 

var((/OLS)-var,,( i) =var( /1(X1)+ I I' ,(X)) 

> 0, 

and thus OLS is not an efficient estimator. 
Comparison of the asymptotic variance of /3 (or ,3) and ry (or ry) suggests that 

knowledge of the propensity score can help in a subtler way than the mere 
projection on the propensity score. Consider again the experimental data case 
where /3 = y. We observe that /3 is efficient whereas ^ is not. This is due to the 
fact that we essentially throw away observations with Di = 0 in the "complete" 
data analysis. With the knowledge that /3 = y, we can avoid this loss of 
information. It is natural to conjecture that this observation would generalize to 
the situation where the propensity score is not necessarily constant. Suppose 
that p(Xi) =po for Xi E% and p(Xi) =pI for Xi E.Z, where Po =PI and 
%0 U 2j = 2. Suppose that we classify the observations according to the known 

propensity score. On each subgroup where the propensity score is equal to p0, 
say, we can efficiently estimate 

E[Yli-Yoi IDi = 1, p(Xi) =po] = E[Yli -Yoi Jp(Xi) =Po] 

by /3. 

Dept. of Econioinics, Unitersity of Pennsylvania, 3718 Locuist Walk, Philadelphia, 
PA 19104-6297, U.S.A.; hahn @econi.sas. ipen;z.edli 

Manuiiscript receitved Febriiaiy, 1995; final rei'ision received April, 1997. 

TECHNICAL APPENDIX 

PROOF OF THEOREM 1 

In calculating the variance bounds of 8 and -y, I follow the approach of Bickel, Klaassen, Ritov, 
and Wellner (1993, Section 3.3). First, the tangent space is characterized. The density of (Y0, Y1, D, X) 
(with respect to some u-finite measure) is given by 

q7(yo, Y'1, d, x) =f (y,O, y I Ix)p(x) d( _p(X))1 
- 

f(X), 

where f(y0, y lx) and f(x) denote the conditional distribution of (Y0, Y1) given X, and the marginal 
distribution of X, respectively. The density of (Y, D, X) is then equal to 

q(y,d,x) = [fl(ylx)p(x)Yt[f0(y Ix)(1 _p(X))], 1f(x), 
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where f1(.jx) =f(yO, *x)dyO, and fO(Jx) =f(-,y1 x)dy1. Consider a regular parametric submodel 

(5) [ fi(y Ix, O)p(X, 0)] d[fo(Y,X, 0)(1 _p(X, 0))] -f(X, 0), 

which equals q(y, d, x) when 0 = 00. The corresponding score is given by 

(6) s(d, y, x I 0) -_d sl(y ix, 0) + (1- d) so(y ix, 0) 

+ 
d - p(x, 0) Px )+tx ) 

p(x, 0)(1 -p(x, 0)) 
where 

d 
s1(y x, 0) = -log fl(YJX, 0), dO 

d 
sO(Y x, 0) = -log fo(YjX, 0), 

dO 
d 

p(x, 0) = -p(x, 0), 
dO 
d 

t(x, 0) = -logf(X, 0). 
dO 

From (6), we obtain 

56= {d sl(y x) + (1 -d) so(y x) + a(x) (d-p(x)) +t(x)} 

as the tangent space of this model, where fsj(y x)fj(y fx) dy = 0 Vx, j = 0,1, ft(x)f(x) dx 0, and 
a(x) is any square-integrable measurable function of x. 

Now, the average treatment effect is shown to be pathwise differentiable. For the parametric 
submodel under consideration, we find that 

/3(0) = ffyfl(y fx, 0)f(x, 0) dydx - ffyfo(y fx, 0)f(x, 0) dydx, 

and 

ffyp(x, 0)fl(y x, 0)f(x, 0) dydx - ffyp(x, 0)fO(y x, 0)f(x, 0) dydx 

fp(x, 6)f(x, 0) dx 

Thus, 

o0 ffysl(y lx, 00)fl(y Ix)f(x) dydx + f,831(x)t(x, oo)f (x) dx 

- ffyso(ylx, Oo)fo(yfx)f(x) dydx - f /0(x)t(x, oo)f(x) dx, 

and 

dy(00) ffyp(x)sl(y fx, OO)f1(y fx)f(x)dydx ffyp(x)so(y Ix, OO)fO(y Ix)f(x) dydx 

do p p 

f (8(x) - y)p(x, Oo)f(x)dx f13f(x) - y)p(x)t(x, OO)f(x) dx 

p p 
Let 

D 1-D 
(Y, D,X)= p(X) (Y 31(X)) 1-p(X) ( (X)) + /3(X) - 3 

D 1-D p(X) 
Fy (Y, D, X)- -*(Y - '81() - pY 1-p(X) ( 

p p p - p X. 

/3(X) - /3(X) - 
+ ~~(D -p(X))? p() 

p p 
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For the parametric submodel whose score is given by (6), we have 

d,0 (00) 
do= E[ Ft3 WI D, X) *s(D, Y, XI 00)], 

dO E[ F,(Y, D? X) *s(D, Y, XI 00) ] 

from which we conclude that ,3 and y are differentiable parameters. 
The variance bounds are the expected squares of the projections of Ff and F, on 5?. Because 

F,3,FF, c5-, the projections on Y are themselves, and the variance bounds are the expected squares 
of the projections of F,3 and F,. 

PROOF OF THEOREM 2 

Now the parametric submodel under consideration changes from (5) to 

[fi(y |X, 0 )p(X)]d [fo(y |x, 0 )(1-_p(X))] -f(X, 0 )- 

Because the score now equals 

s(d,y,x 0) -d s1(y x, 0) + (1 -d) s0(y x, 0) + t(x, 0), 

the tangent space changes to 

?= {d * sl(y Ix) + (1 - d) * so(y {x) + t(x)}. 

We find that 

d,(3 ( o00 
do0= E[F,f3(Y, D, X) s(D, Y, XI 0)], 
d0 

and 

dry ( 00) 
= E[F,(Y, D, X) s(D, Y, XI 0)], 

for 

D 1-D 
FJ3WI D, X) = (Y- f31(X)) - (Y- p30(X)) + p3(X) -/, 

p(X) 1-p(X) 

X) D 1 - -D p(X) _______y 
F ( Y, D,IX) = -- ( Y , 8( X )) - (,, ( Y-,SOfX )) + p( X) . 

p p I 1-p(X) 0p 

Because F13, F,, e5 again, the variance bounds are the expected squares of the projections of F and 

Fy 

PROOF OF THEOREM 3 

The regular parametric submodel under consideration now changes to 

q(y,d, x) =[,f(y Ix, 0)p(0)]d[fo(y x, 0)(1 _p(0))]l-df(x, 0). 

The tangent space is thus equal to 

Y= {d*s1(yix) + (1 - d) *so(ylx) + a * (d -p) + t(x)}, 

where a is real number. We find that 

d,8(00) 
do =0 [o,sWI D, X) -s (D,Y, XI 0A] 
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for 

D 1-D 
FJ6(Y,D,X) - p(Y-/31(X))- *(Y-,/3(X)) + ,8(X)-,/. 

p i-p 

Because F, E39, we obtain E[F2] as the variance bound for ,3. 

PROOF OF PROPOSITION 4 

For the general case, we can use Newey's (1994) argument for a heuristic proof. I only consider ,3 
and y. The asymptotic variance of ,3 and y can be similarly obtained. First, consider ,3. This 
estimator takes the form (1/In)inm(Zi, h1, h2, 173), where 

ho](x) = E[ DiY, IX = x]1 

10)2 (X) = E[(1- Di)Yi IXi = X] 

h03(x) = E[Di IXi =X], 

and h1, h2, h3 are their estimators. Zi denotes the observation for individual i. Let h (0), 112(0), h3(0) 
denote the corresponding functions under some parametric submodel which equals the true model 
at 0 = 00. Because m(Xi, hl, h,, h3) depends on h1l, h,, h3 only through their values 
h (Xi), h(Xi), h3(Xi), it follows that 

-^E[i?i(Xi, h,(O), h,(O), h3(o))] = dE E ,hj(o) b6(Xj)] 
890 do k)OiAi) 

for 
C) 

= in(x, hl(0), h9(0), h3(0)) I 0= , 

Notice that 

1 

8(x) -1-p() 

2 l-p(X)' 

:6() 
'1(X POWX 

3(X) = p(X) (1 -p(X)) 

Newey's (1994) Proposition 4 then suggests that the above estimator has the asymptotic influence 
function equal to 

Di(Yji -/31(X)) (1 - Di)(Yo0 i +0(Xi) ((Xj) )(x) ( 81 

p(Xi) 1 -p(X,) +(3()-/0X)-(3 

so that its asymptotic variance equals the efficiency bound. For ~, Newey's (1994) Proposition 4 
suggests that the numerator has the asymptotic influence function equal to 

DiYi-1(X)) - (1 - Di)(Y - /0(Xi)) + Di ( /1(Xi) - /0(X)) -py. 
1 -p(X,) 

Because the denominator has the asymptotic influence function equal to Di -p, the asymptotic 
influence function of the ratio can be computed by the delta method as equal to 

Di I 1-Di p(Xi)D 
-(Yi-/1(X,)) - ( (Y0i - /0(Xi)) +-( ,1(Xj) -/0((Xi) - 

p p 1p t(Xt ) p 

and the asymptotic variance of this estimator equals the efficiency bound. 
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PROOF OF THEOREM 6 

I only consider f3. The rest can be shown similarly. First, I introduce some notation. For a vector 
of function f(x), let 

If(x)Id = maxiAI < dmaxXE IAf(x)I, 

where r is the support of Xi. We also let 

~d(K) = SUpIAI=d Xe I8dpK(x)I. 

In what follows, C denotes a generic constant. 
To show that the series estimation based imputation estimator is efficient, it suffices to show that 

the following conditions taken from Newey (1994) are satisfied: 
1. E[u'i Xi] is bounded for k = 1,2,3. 
2. (i) The smallest eigenvalue of E[pK(Xi)pK(Xi)'] is bounded away from zero uniformly in K; 

(ii) pK(x) is a subvector of PK+ I(X) for all K; (iii) for each K, there is some nonzero r such that 
I 
pK(X) is a nonzero constant on the support of Xi. 
3. For each nonnegative integer d, if Ig(x)Id is finite then there are constants C, ad > 0 such that 

for all K there is ir with Ig(x) - pK(X)'.Id < CK-'d. 

4. (i) There is a function D(z, h) linear in h such that for all h with Ih - h0j0 sufficiently small, 

Im(z, h) - m(z, ho) - D(z, h - h0)In < b(z)Ih - ho 0; 

(ii) E[b(Zi)] Vd(K)[(K/n)112 + K- ] - 0 

and 

E[b(Zo)]v4fd(K)2[K/n +K ] 2 0. 

5. There is b(z), d > 0 such that E[b(Zi)2] < x, ID(z, g)Io < b(z)IgId, and 

(EK 
12 

Kl)/ 2x[(K/n )1 + Ka ]O. 

6. (i) There is 8(x) such that E[D(z, g)] = E[8(Xi)g(Xi)] for all g; (ii) for each K there are TK 

such that 

n.E[18(Xi) - Kp - TK (Xi)l1] -O, 

O(K) Kln O> 0, 4o(K)2E[Ig(X) - 1rKpK(X )I] 0, 

E[18(X,) - KP (X0)1] 0 

Except for condition 4 (i), these conditions are equivalent to Newey's (1994) Assumptions 6.1-6.6. 
Newey's Assumption 6.4 (i) is replaced by his Assumption 5.1 (i), because the former is stronger than 
necessary for obtaining asymptotic normality: he makes the assumption to make the proof of the 
consistency of the asymptotic variance estimator easier. Newey's (1994, Theorem 6.1) shows that the 
semiparametric estimator is asymptotically normal under these conditions. 

I will verify that these conditions are satisfied. Condition 1 is satisfied by hypothesis. By Lemma 
A.15 of Newey (1995), condition 2 is satisfied by pkK(x) equal to the products of polynomials that 
are orthonormal with respect to Hlj= 1[(x - x1j)(xj -x) v with ;d(K) < CKI + V+ 2d and IpkK(X)ld < 

CK 5+ 2d. By Lemma. A.13 of Newey (1995), condition 3 is satisfied with ad equal to any positive 
constant. Because p(x) is bounded away from 0 and 1, for h sufficiently close to ho, condition 4(i) is 
satisfied with 

D(z, h-h ) =h-hol h2 
- 

_ hol + 1 h2 ](h -h ) 
03 03 0h3 (1 -h03) ] 



330 JINYONG HAHN 

and 

b(z) = C(1 + 13,8(x)l + 1,30(x)D. 

Also observe that 

[() 2 ] ? (( ) +K I+ d) a 0 

nO(K) [- +K (a K =?( K +da2+2 -2a) ? 

if we take av> 1 + v. For condition 5, note that 

D(z, g)v ? C(1 + ,31(x)1 + K0(x)I)-gL, and 

[( K7+1 1/1 

For condition 6, note that 

ED(Z, g)] = E[ 1(XI)g(Xx)] for 

(p(x) 1 p()1 K(x) 1132)) 

Because 8(x) is continuously differentiable of all orders, by Lorentz (1986, Theorem 8), there exist 

qrK and (K such that 

E[l(XP)-( K (Xi)H - O(KK2 a 0 and 

ELHg(Xi) - 7FKpK(Xi)lo] - O(K 2& C) 0. 

We have 

E E[D(XZ ) - g Kp) E [(Xi)-0] g gXi) for= O(nK4a) 0, 

8WK -= 0~ n 

So(K) EHgP(X) l = P(X)] O(K2?-22) 0 

if we take ai sufficiently large. 

PROOF OF PROPOSITION 7 

Newey's (1994) Proposition 4 suggests that the numerator has the asymptotic influence function 
equal to 

E[18 Xi) ~K p(Xi)12 ( n 

- KXi1231(XK)) l -(1 -D)(Y - 30(X.))?P(X) ( (X)-o(X))-py 

E'lg(i) - -p(XP) 

Because the denominator has the asymptotic influence function equal to p(X,) -p, we can use the 
delta method to obtain the asymptotic influence function, 

-( j3(XK)) (Xi) ( KY0 30(Xi)) + p 4( a(X) o (X) - y) 

pto pK 1f -Xis pstK 

Th weyasymptotic variaceofithion4sugestimatoreqals the nuefficenc bound.ymtti nfuncunto 
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