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Asymptotic Distribution of P Values in Composite 
Null Models 

James M. ROBINS, Aad VAN DER VAART, and Valerie VENTURA 

We investigate the compatibility of a null model Ho with the data by calculating a p value; that is, the probability, under Ho, that 
a given test statistic T exceeds its observed value. When the null model consists of a single distribution, the p value is readily 
obtained, and it has a uniform distribution under Ho. On the other hand, when the null model depends on an unknown nuisance 
parameter 0, one must somehow get rid of 0, (e.g., by estimating it) to calculate a p value. Various proposals have been suggested 
to "remove" 0, each yielding a different candidate p value. But unlike the simple case, these p values typically are not uniformly 
distributed under the null model. In this article we investigate their asymptotic distribution under Ho. We show that when the 
asymptotic mean of the test statistic T depends on 0, the posterior predictive p value of Guttman and Rubin, and the plug-in p 
value are conservative (i.e., their asymptotic distributions are more concentrated around 1/2 than a uniform), with the posterior 
predictive p value being the more conservative. In contrast, the partial posterior predictive and conditional predictive p values of 
Bayarri and Berger are asymptotically uniform. Furthermore, we show that the discrepancy p value of Meng and Gelman and 
colleagues can be conservative, even when the discrepancy measure has mean 0 under the null model. We also describe ways to 
modify the conservative p values to make their distributions asymptotically uniform. 

KEY WORDS: Asymptotic relative efficiency; Bayesian p values; Bootstrap tests; Goodness of fit; Model checking. 

1. INTRODUCTION 

Bayarri and Berger (1999, 2000) proposed two new 
"Bayesian" p values, the conditional predictive p value and 
the partial posterior predictive p value. They claimed that 
for checking the adequacy of a parametric model, these new 
p values are often superior to the "plug-in" (i.e., parametric 
bootstrap) p value and to previously proposed "Bayesian" 
p values: the prior predictive p value of Box (1980), the 
posterior predictive p value of Guttman (1967) and Ru- 
bin (1984), and the discrepancy p value of Gelman, Carlin, 
Stern, and Rubin (1995), Gelman, Meng, and Stern (1996), 
and Meng (1994). Their claim of superiority is based on 
extensive investigations of the small-sample properties of 
the various candidate p values in specific examples. In this 
article, we investigate their large-sample properties and find 
that our asymptotic results indeed confirm the superiority 
of the conditional predictive and partial posterior predictive 
p values. 

In Section 2 we state two theorems that characterize the 
asymptotic distributions of the candidate p values; their 
proofs are given in Section 5. In Section 3 we study three 
examples that vividly illustrate the advantages of Bayarri 
and Berger's proposals. For certain models, however, the 
new p values may be difficult to compute, and alternative 
approaches would be useful. One such approach, discussed 
in Section 4, is to appropriately modify the test statistic 
or discrepancy measure to make the plug-in, posterior pre- 
dictive, and discrepancy p values asymptotically uniform. 
This approach is particularly successful for the discrepancy 
p value, in that we derive a test based on a particular dis- 
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crepancy measure that is both asymptotically uniform and 
locally most powerful against prespecified alternatives. But 
this discrepancy can itself be difficult to compute in com- 
plex models. The remainder of this section is devoted to 
a broad overview of the main concerns and results of the 
article. 

1.1 Overview 
Suppose that we have observed a realization Xobs of a 

random variable X. We posit a parametric "null" model, 
Ho: f(x;0),0 E e) c RP, for the density of X, and wish 
to investigate the compatibility of the null model with the 
observed data Xobs. We do so by comparing the distribution 
of a given test statistic T = t(X) with its observed value 
tobs = t(Xobs), using the p value 

P(Xobs) Prm( ) [t(X) > tobS] (1) 

as a measure of compatibility, where m(x) _ mx(x) is a 
reference density for X and m(t) mT(t) the correspond- 
ing marginal density of T, and the superscript m(.) signifies 
that X has density m(x). 

One approach to testing compatibility of the null model 
f(x; 0) is to embed it into a larger parametric model, 

f(X; , 0),I (, 0) c @ X e, (2a) 

in which / 0 corresponds to the null model Ho; that is, 

f(X; 0, 0) = f(X; 0), 0 E 0), (2b) 

whereas :b 7 0 characterizes alternatives to Ho. When 
f (x; ?4, 0) truly represents all alternatives thought likely to 
be true when Ho is not true, Bayesian statisticians tend to 
forego the use of p values in lieu of Bayes factors or a 
full Bayesian analysis. But when f(x; ?4, 0) is simply used 
to represent alternatives to Ho that are substantively im- 
portant to detect, or when no alternative model is specified, 
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many Bayesian statisticians join with their frequentist coun- 
terparts and use p values as measures of compatibility. 

1.2 Candidate p Values 

To calculate the p value (1), a reference density m must be 
chosen. If the null model consists of a single density f (x; 0), 
there is universal agreement that m(x) should be f(x; 0). 
Then p(X) is uniform when Ho is true, where p(X) de- 
notes the random variable whose observed value is p(Xobs). 
When the parameters space e is not a singleton (i.e., Ho is 
composite), one must eliminate the unknown "nuisance" pa- 
rameter 0 to obtain a reference density m in (1). Bayarri and 
Berger (2000) considered various candidates for m, each 
resulting in a different candidate p value. For example, the 
plug-in p value Pplug uses mplug (XIXobs) f (X; kobs), where 
Oobs maximizes f(xobs; 0); note that we write m(.) in (1) 
as mplug(- xobs) to stress its dependence on the observed 
data Xobs. The reference densities for Pplug and for other 
candidate p values based on the statistic t(X) are reported 
in Table 1. Most of the p values considered by Bayarri and 
Berger are called "Bayesian" p values, because they assume 
a (possibly improper) prior density ir(O) for 0. These include 
the prior predictive p value Pprior of Box (1980) and the pos- 
terior predictive p value Ppost of Guttman (1967) and Rubin 
(1984), which use the prior and posterior predictive densi- 
ties as references. Bayarri and Berger (1999, 2000) added 
two new proposals, the partial posterior predictive p value 
(Pppost) and the conditional predictive p value (Pcpred). We 
also study two additional candidate p values that were not 
considered by Bayarri and Berger (2000): the conditional 
plug-in p value Pcplug, which uses the maximizer kcMLE,obs 
of the conditional likelihood f (Xobs Itobs; 0) as a plug-in, and 
the discrepancy p value Pdis of Gelman et al. (1995), Gel- 
man et al. (1996), and Meng (1994) which replaces the test 
statistic t(X) by a discrepancy t(X, 0), a function of the 
data X and of the parameter 0, so that 

Pdis -Pdis(Xobs) = Pr Mdis()[t(X, 0) > t(xobs 0)] 

with mdis (X, 0 |Xobs) f (X; 0) rpost (O IXobs) 

1.3 Desirable Sampling Properties of Candidate p 
Values 

First, we present some terminology. We call the random 
variable p(X) a candidate p value if it has range [0, 1]; if 

it is also uniform under Ho, then we say that p(X) is a 
frequentist p value. When a candidate p value is not uni- 
form, we say that it is conservative (anticonservative) at 0 
if Pr[p(X) < t] is less (greater) than t for all t < 1/2 when 
Ho: X f(x; 0), 0 E e) is true. Finally, a candidate p value 
is globally conservative (anticonservative) if it is conserva- 
tive (anticonservative) for all 0 E e). 

This terminology was motivated by the following consid- 
erations. All candidate p values in Table 1 have range [0, 
1], but because Ho is composite, they may not be uniformly 
distributed, even when Ho is true. Yet in practice, we use 
small values of p(xobs) to denote surprise or incompatibil- 
ity because, in analogy with the noncomposite case, we act 
as if p(X) was U[O, 1] under Ho. Seriously anticonservative 
candidate p values may cause us to discard the null model 
even when it is quite compatible with the data, whereas 
seriously conservative candidates may cause us to fail to 
discard models that are grossly incompatible with the data. 
Examples are given in Section 3. 

The essential point is that a p value is useful for assess- 
ing compatibility of the null model with the data only if 
its distribution under the null model is known to the ana- 
lyst; otherwise, the analyst has no way of assessing whether 
or not observing p = .25, say, is surprising, were the null 
model true. That we specify that distribution to be uniform 
is largely a matter of convention. A useful analogy is as 
follows. It is a matter of convention whether temperatures 
are reported on the centigrade versus the Fahrenheit scale; 
however, if we are told that the temperature is 300, then it 
is essential that we are also told the scale if we are to know 
whether to plan to go swimming or skiing. 

Hence, for frequentist testing purposes, we should require 
that candidate p values be frequentist p values. This require- 
ment is generally unfulfillable, with the exception of spe- 
cial models, many of which were discussed by Bayarri and 
Berger (2000), but often can be approximately satisfied in 
large samples, particularly when, as we assume, the data X 
arise from n mutually independent random variables. Then 
m in (1) can be chosen so that p(X) is an asymptotic fre- 
quentist p value; that is, one whose distribution converges 
in law to a U[O, 1] distribution under Ho: X f (x; 0) for 
all 0 E E), as n -? oo. 

We next argue that Bayesian statisticians who use p val- 
ues to assess the compatibility of a model with the data 

Table 1. Reference Densities for the Various Candidate p Values 

Method Reference density 

Plug-in (Pplug) mplug (xlXobs) = f(x; Oobs) 
Prior predictive (Pprior) mprior (x) = f f(x; 0)Xr(O) dO 
Posterior predictive (ppost) mpost(xlXobs) = f f(x; 0)7rpost(OIXobs) dO 
Partial posterior predictive (Pppost) mppost(xlXobs) = f f(x; 0)rppost(OIXobs) dO 

Conditional predictive (Pcpred) mcpred(xlXobs) = f f(XI6cMLE[s; 0)7rcpred(OIXobs) dO 
Conditional plug-in (Pcplug) mcplug(xlXobs) = f(x; OcMLE,obs) 
Discrepancy (Pdis) mdis(X, OIXobs) = f(x; 0)7post(OIXobs) 

NOTE: The data model is f(x; 0), where 0 has MLE 0obs The prior for 0 is 7r(0), and the posterior 7rpOSt(OIxobs) o f(xobs; 0)7r(0). The posterior in the conditional model f(xlt;0) iS 7rppost(OlXobs) 

oc f (Xobs Itobs; 0)-7r(0), where t = t(x) is the test statistic. The conditional MLE, jcMLE,obs, is the rriaximizer of f(xobs Itobs; 0). The posterior for 0 in the "marginal" model, where only the 
statistic OcMLE is available to the data analyst, is lFcpred(OIXobs) lFcpred (OIOcMLE,obs) ?C f(6WLE,obs; 0)i7r(0). Here f(OcMLE,obs, 0) denotes the marginal density of the random variable OcMLE 

evaluated at its observed value 0cMLE,obs, and f(x 0cMLE,obs; 0) denotes the conditional density of X given OcMLE. 
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should require them to be asymptotic frequentist p values. 
For if the goal is to check the model rather than the prior, 
then any procedure should perform adequately whatever the 
prior, including point-mass priors. This would imply that p 
values should be required to be frequentist p values, a re- 
quirement which, as mentioned earlier, usually cannot be 
fulfilled. But because as the sample size increases, the data 
dominate any prior with support on all of the e), Bayesians 
should both expect and require that any model checking 
procedure should perform adequately in the limit as n -? oo. 
Of course, not all Bayesians would agree with this argu- 
ment; Bayarri and Berger (1999), Box (1980), Evans (1997), 
and Meng (1994), have provided some alternate viewpoints. 

1.4 Centering of Test Statistics 

The following discussion applies to all of our candidate p 
values except the discrepancy. In most statistics texts, dis- 
cussions of the asymptotic distribution of tests of fit for a 
null model Ho: f(x; 0), 0 C e) restrict attention to statistics 
t(X) such as the score, likelihood ratio, or Wald test of the 
hypothesis , = 0 in a larger model (2a)-(2b), or general chi- 
squared goodness-of-fit statistics, which are asymptotically 
pivotal with distribution F, often a chi-squared or a stan- 
dard normal distribution independent of 0 C 0). Then mT(t) 
in (1) is the density of T = t(X) corresponding to F, which 
does not depend on the observed data Xobs. In contrast, in 
the Bayesian p value and parametric bootstrap literature, the 
limiting distribution of t(X) often depends on 0 and the ref- 
erence density mT(tlXobs) depends on Xobs, although in the 
bootstrap context attention is generally restricted to statis- 
tics t(X) whose asymptotic mean is independent of 0. We 
show in Theorem 1 that under regularity conditions, all of 
the aforementioned candidate p values, with the exception 
of the prior predictive p value, are asymptotic frequentist p 
values when the asymptotic mean of t(X) does not depend 
on 0. 

Remark 1. We have not yet discussed the most common 
definition of a frequentist p value, 

Psup(Xobs) = sup prf(X;O)[t(X) > t(Xobs)] 

The p value Psup (X), like Pprior (X), need not be an asymp- 
totic frequentist p value if the limiting distribution of t(X) 
depends on 0, even if the asymptotic mean of t(X) does 
not vary with 0. For this reason, we do not consider either 
Psup (X) or Pprior (X) further. 

Many of the test statistics considered in the Bayesian p 
value literature have asymptotic means that depend on the 
parameter 0; three examples illustrate this in Section 3. In 
the remainder of the article, we study the consequences 
of allowing the asymptotic mean of t(X) to depend on 0. 
We restrict attention to statistics t(X) with a normal lim- 
iting distribution. Extensions to statistics with limiting chi- 
squared or folded normal distributions are immediate, and 
asymptotic results for statistics with other limiting distri- 
butions will be pursued elsewhere. 

If the asymptotic mean of t(X) varies with 0, then the 
plug-in and posterior predictive p values will be conserva- 

tive even as n -? oo, with the former always the less conser- 
vative, whereas the conditional plug-in p value Pcplug will 
be anticonservative. In contrast, under regularity conditions, 
the partial posterior predictive and the conditional predic- 
tive p values are asymptotic frequentist p values. Further, 
the asymptotic power of the nominal a-level test based on 
Ppost against local Pitman alternatives is always less than the 
power of the test based on Pplug, itself less than the power of 
the tests based on Pppost and Pcpred. In fact, we show that in 
certain examples, the asymptotic relative efficiency (ARE) 
of the partial posterior predictive or conditional predictive 
test compared to a locally efficient likelihood ratio or score 
test is 1, whereas the ARE of the posterior predictive test 
can be 102 or less, and, consequently, its power much less 
than the nominal oa-level; see Section 3 for examples. 

In the proof of Corollary 3 in Section 5, we show that the 
posterior predictive and plug-in p values are conservative 
when the maximum likelihood estimator (MLE) 0 and t(X) 
are asymptotically correlated, regardless of the sign of the 
correlation. Furthermore, we show that 0 and t(X) will be 
asymptotically correlated whenever the asymptotic mean of 
t(X) depends on 0. Thus, as pointed out by Berger and Ba- 
yarri (1999, 2000) and Evans (1997), the problem with these 
p values is that t(X) is effectively used twice: first to esti- 
mate 0, and again to assess lack of fit. In contrast, the con- 
ditional MLE, 6cMLE, and t(X) are always asymptotically 
uncorrelated, which is why Pppost, Pcpred, and Pcplug are not 
conservative. But although Pppost and Pcpred are asymptoti- 
cally uniform, Pcplug is anticonservative, because it fails to 
properly account for the variability of OcMLE In proposing 
Pppost and Pcpred, both motivated through Bayesian argu- 
ments, Bayarri and Berger have solved the "frequentist" 
math problem of finding a reference density m(' xobs) such 
that the p value (1), based on an arbitrary statistic t(X) with 
a limiting normal distribution, is an asymptotic frequen- 
tist p value. What is curious is that the obvious frequentist 
guesses, mplugX( Xobs) and mcplug( IXobs), fail. 

The preceding considerations do not apply to the dis- 
crepancy p value. Specifically, we show that Pdis can be 
seriously conservative even when the discrepancy t(X, 0) 
has asymptotic mean 0 under f (x; 0) for all 0 C e. 

2. LARGE-SAMPLE RESULTS 

To formally study the large-sample properties of our can- 
didate p values, we consider the following canonical setup. 
At sample size n, the data are X-Xn = (XI,....Xn)9 
where the Xi are mutually independent random variables, 
each following a parametric model fi (X;n, 0) with 0b, c 
'I c R' and 0 C e c RP. Thus the likelihood is 

n 

f(x;'On, f) - fJfi(Xi;'On i0). 
i=l1 

Unlike Robins (1999), we do not assume the Xi to be identi- 
cally distributed to allow for regression models in which the 
regressors are regarded as fixed constants, as in Example A 
of Section 3. The subscript ni in fn indicates that the uni- 
dimensional nuisance parameter is allowed to vary with ni; 
that is, fn 0 for all ni under Ho, and fnk=/kn/ under 
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local Pitman alternatives, where kn -+ k C RI as n -+ oo. 
Note that when 'n = 0, we frequently write the data model 
f (x; On, 0) = f (x; 0, 0) more simply as f(x; 0) and, for no- 
tational convenience, often suppress the subscript n denot- 
ing sample size in quantities such as X Xn. 

Attention is restricted to univariate test statistics t(X) 
that are asymptotically normal with asymptotic mean 
vn(kn/ ri, 0) and asymptotic variance a'2(0) under the null 
and local alternatives; that is, we assume that when X 
f (x; kn / Vn 9), 

nI/2 [t(X) - vn l(kn/ rn0)1 N(0, 1), (3a) 

where ---> denotes convergence in distribution. Note that 
because local alternatives are contiguous (van der Vaart 
1998, chap. 6), the asymptotic variance au2(0) does not de- 
pend on k. We also assume that (3a) holds for sequences 
0 = Oo + k*/vrn for any fixed 00 and k*. 

We further assume that the functions vn are continu- 
ously differentiable in a neighborhood of (0, 0), with partial 
derivatives converging to limits as n -+ oc. Thus 

z>o(0)= limr &vn(O0)/00 (3b) n-ooo 

and 

il,r(0) = lim v (fb, 0)/0& 1 =o (3c) 
ni-*oo 

both exist. Note that ilo (0) is a p vector that is nonzero 
only when the asymptotic mean vn(0) = vn(O, 0) of 
t(X) under Ho depends on 0. In Theorem 3, we prove 
that under mild additional conditions, ',p (0) and vo (0) 
are equal to the asymptotic covariances of nl/2[t(X) - 
vn(0)] with n-1/2SP(0) = n-r/20logf(X; 'f0)/&19,j= 
and n-1/2SO(0) = n-1/20logf(X;0,0)/&0, where Sp(0) 
and So(0) are the scores for b and 0 at b - 0. 

We also need to define the scalars 

Q(0) = z>o(0)'iy01(0)i>(0) (4) 

and 

w(0) = z>, (0) - N (0)'iy I(0)ioo (0) (5) 

and the noncentrality parameter 

NC(0) - w(0)/[U2(0) _ Q(0)]1/2, (6) 

where ioo(0) = limn0 nr-rEo [_-2 log f(X; 0, 0)/&0&0'] = 
Iimn--0oo n-rEo [SO2 (0)] and iop(0) limnoO0 n-rEo 
[_02 log f (X; ,, 0)/06&00] 1,0o= limn on-1Eo [S' (0) 
So (0)]. Here and elsewhere, E0 denotes expectation with 
respect to f(x; 0). Note that Q(0) and aX(0), in contrast with 
w(0) and NC(0), depend only on the null model f(x; 0). 

We are now ready to state our main theorem, which we 
subsequently interpret in a series of remarks. 

Theorem 1. Subject to the assumptions of Theorems 3 
and 4, under law f (x; kn/n ri, ), each candidate p value can 
be written as 

where op (1) denotes a random variable converging to 0 in 
probability, (P is the standard normal cdf, and Q =Qq(X) 
N(kp(0), T2(0)), with ,u(0) = T(O)NC(O). The values of 
T2(0) for our candidates are as follows: 

Plug-in: T2lug (0) = [U2(O) - Q(O)]J/2 (0) 
Posterior predictive: T2ost(0) = [U2(O) Q(O)]/[U2(0) + 

Q(0)] 
Partial posterior predictive: T2post(0) 1 
Conditional predictive: T2pred (0) 1 
Conditional plug-in: T2plug(0) = U2(0)/[U2(0) _ Q(0)] 

Remark 2: Asymptotic Frequentist p Values. Theorem 1 
implies that a candidate p value is an asymptotic frequentist 
p value under Ho (i.e., k = 0) if and only if T2(0) = 1. 

Hence all candidate p values referred to in Theorem 1 are 
asymptotic frequentist p values when v'o(0) = 0, because 
then Q(0) in (4) is 0. When z>o(0) # 0, with T2(0) < 1 
(T2(0) > 1), the p value is conservative (anticonservative). 
Hence Pcplug is anticonservative, whereas Pppost and Pplug 
are conservative, with Pppost being the more conservative 
because T2p(0) < ug(0) 

Remark 3: Efficiency. Let X(&) = I[p(X) < o] denote 
the nominal &e-level test that rejects Ho whenever x(&U) =1; 
here I[A] is the indicator function for event A that takes 
value 1 if A is true and 0 otherwise. 

The asymptotic power of test x(&Z) is 

13(oz IkIO) = lim Ek ,/, 0[X( )] (7) 

where Ek/ly,o refers to expectations under f (x; k/ r'i, 0). 
The asymptotic representation of p(X) given in Theorem 
1 implies that X(av) has 3(a,k,0) = 1- [zi-_r1-(0) - 

kNC(0)]. In model f(x; ,, 0), a locally most power- 
ful asymptotic a-level test Xeff (a) of the hypothesis 
,0 = 0 has asymptotic power 1 - D[zi- - kNCeff(0)], 
where NCeff (0) is the efficient noncentrality parame- 
ter NCeff (0) {i',j (0) - i,0(0)Iioj(0)i0qi,(0)}1/2 with 
iV,0,(0) = IiMn 1o n-'Eo[Sp(0)2] (see van der Vaart 1998, 
chap. 15). The following lemma indicates that a sufficient 
condition for Xppost (o) and Xcpred (&) to be locally most 
powerful at a particular value 0* of 0 is that t(X) is asymp- 
totically equivalent to an affine transformation of Sp(0*), 
because then NC(0*) = NCeff(0*); the proof is in Section 5. 

Lemma 1. Under regularity conditions, if nr1/2t(X) = 
an-I/2SV,(0*)+b+op(1) under f(x; 0*), for some constants 
a and b with a + 0, then NC(0*) = NCeff(0*). 

Remark 4: Actual Asymptotic Level and Relative Power 
and Efficiency. The asymptotic actual o&-level of test X(cv) 
is /3(a, k, 0) evaluated at k = 0, which we denote by 
actual(O&, 0). As a function of o&, actual(o&, 0) is the cdf of 
the asymptotic distribution of p(X) under Ho. We define 
the asymptotic relative power (ARP) of test x(&U), denoted 
by ARP =ARP(&e, Q, 0), as its asymptotic power under al- 
ternative f(x;kppoi-i, 0), with kpos chosen such that 
the asymptotic power of Xppost (&) iS Q; that is, with kpOs 
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such that 3ppost(a Ikppost 0) = Q. Finally, the asymptotic 
relative efficiency ARE = ARE (o&, Q, 0) of candidate test 
X(o&) is the limit, as ncand -+ oo, of the ratio 7ppost/rtcand, 
where nppost and ncand are the sample sizes needed for tests 
Xppost (a) and candidate test X(a) to both have power Q un- 
der the alternative f (x; k/ rni, 0). 

Corollary 1. For each candidate p(X) of Theorem 1, 
the actual asymptotic o&-level of the test X(&Z) is 

actual(a, 0) =1 - @ [zl-a- f 1 (0)] - 

If z,p (0) + 0, then the ARP and ARE are 

ARP(ao, /, 0) 1 - [-zQ8 + zj,(r (0) - 1)] 

and 

ARE(al Q, 0) (1(+ z1'/zQ3)2 
(I + T 1 (O)Z1,_/Z)2 

Note that neither ARP(oz, Q, 0) nor ARE(o&, Q, 0) depends 
on NC(0), and so these two quantities are the same for all 
local alternatives nesting the model f(x; 0). When T 2(0) < 
1/3, ARP(o&, 1- o, 0) < a, so the asymptotic local power of 
the test X(o&) is less than o&, even though the test Xppost(o&) 

has asymptotic power Q = 1- a. 

Remark 5: Discrepancy p Values. In Section 5 we prove 
that the discrepancy p value and the posterior predictive p 
value are related as follows. 

Theorem 2. Let t(X, 0) be a discrepancy measure and, 
for a given fixed 00, let t(X) = t(X, Oo). Then, under 
f(x;k./ in,00),pdis(X) based on t(X,O*) and ppost(X) 
based on t(X) have the same limiting distribution. 

Moreover, if we redefine ao2(0) to be the asymptotic 
variance of &i/2t(X,O) under f(x;0,0) and zlo(O) 
IimnHoo &Vni 0*: 0)/0010 = and &l (0) limno &v (cb,Vn 

0: 0)/0&4j=o where Vn('b,0*: 0) is the asymptotic mean 
of nr/2t(X, 0) under f (x; ,, 0*), then Theorem 1 holds for 
Pdis(X) with Td2s = TP20st. 

3. EXAMPLES 

In this section we use Theorems 1 and 2 and Corollary 
1 to compare the asymptotic properties of our candidate p 
values in three examples. We first report results, and then 
give their derivation. 

3.1 Example A 

Suppose that X = (X1,. .X ,,X7), with the Xi's be- 
ing mutually independent. Consider the null model Xi 
N(yvi,c2),O = ('Y,c2)', and v (vi,... ,v=)' a vec- 
tor of known constants. Let the test statistic be t(X) = 
n-L Ei Xiwi = n-rX'w, where w = (WI, ... ., wn,)' is an- 
other vector of known constants. We assume that v'v = 
w'w = 1 and v'l = w'l = 0, where 1 is the n-vector of 
l's. Then the mean of t(X), Eo(t(X)) pay, depends on 
0 (, c2)' whenever p + 0, where p n,-, E 'wiVi = 
n-Iw/v. Figure 1 shows the asymptotic cdf's actual(a) = 
actual(O&, 0) of various candidate p values under the null 
model, for several choices of p. These depend on w and v 
only through p, and they do not depend on the value of 0 
generating the data. As expected, the plug-in and posterior 
predictive p values are conservative when p + 0, with the 
plug-in the less conservative. Indeed, both are converging 
to a point mass at 1/2 as the empirical correlation p of the 
regressors approaches 1. In contrast, Pcplug is anticonserva- 
tive. In particular, as p -+ 1, actualcphig(&a, 0) converges to 
1/2 for all o < 1/2. 

Let the alternative model be N(,bwi + -yvi, c2). Then the 
score, Sp (0) = ni(t(X) - p'Y)/c2, is an affine transformation 
of t(X), and so Xppost(a) is locally most powerful for test- 
ing , = 0. Figure 2 displays actual(o&, 0), ARP(o&, Q, 0), and 
ARE(o&, Q, 0) as functions of p, with o& = .05 and Q = .80, 
for several candidate p values. These functions do not de- 
pend on the value of 0 = (, c2)' generating the data. Figure 
2(b) shows that when p + 0, the power of both the plug- 
in and posterior predictive tests are less than .80, with the 
latter the smaller; and as p -+ 1, both power functions fall 
below the nominal o&-level of .05 as they converge to 0. 

What is disturbing is that the performances of both the 
plug-in and posterior predictive p values and tests depend on 

p =0.5 p= 0.9 p=0.99 

ppost,~ ~ c cpred) 

CD CD CD 

CD CD~~~~~~~~~~~~~~~ 
CD CD CD~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CD ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~C 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

(a) (b) (c) 

Figure 1. Example A. Asymptotic cdfs of Candidate p Values, for (a) p= .5, (b) p= .9, and (c) p= .99. (-- plug, . post,- - - cplug, - - 

ppost, cpred). 
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Figure 2. Example A. (a) Actual(a, 0), (b) ARP(a, /, 0), and (c) ARE(a, /, 0) as Functions of p for a = 5% and / = 80%. The vertical axes of 
(a) and (c) were truncated for quality of display; note that the actual level of Pcplug(X) -? 1/2 as p -X 1, and its ARE X oo. (-- plug, post, --- 
cplug, -- ppost, cpred). 

the "correlation" p of the regressors, which is ancillary. For 
example, suppose that Ppost = .25 was reported by the data 
analyst. If we know that p = 0, from inspection of Figures 
1 and 2, then we could conclude that the data and model 
appear compatible, but would reach the opposite conclusion 
if p = .99. In our previous weather analogy, p would be the 
temperature scale, Ppost the temperature, and the decision 
whether to use or discard the null model that to go swim- 
ming or skiing-. However, it is rare for p to even be reported 
by the analyst, in which case reaching an appropriate de- 
cision would be impossible. Yet even if p were reported, 
Ppost would not be interpretable by the consumer as either 
compatible or incompatible with the data without the bene- 
fit of the additional detailed mathematical analysis that we 
used to create the plots in Figures 1 and 2. Such analysis 
is beyond the capabilities of most consumers of statistical 
reports. It would be as if an American schoolchild was told 
that the temperature was 30?C but had never been taught 
the centigrade scale. 

Consider now the discrepancy p value based on the aver- 
age score t(X, 0) = nl-IS+P(0) = (c2n)-I Ei(X, - -yVi)wi. 
Note that the mean of t(X, 0) under the null model, Xi 
N(yvi, c2), is 0 for all 0. Nonetheless, because t(X) > 
t(xobs) iff t(X, 0) > t(xobs 0), it follows that pdis(X) = 
ppost (X) with probability 1 under both the null and alter- 
native models. Thus the curves for Pdis (X) and ppost (X) 
in Figures 1 and 2 are indistinguishable. And hence when 
p #& 0, the discrepancy p value is conservative, and the cor- 
responding test is inefficient. This result can also be derived 
directly from Theorem 2 or Corollary 2 below. 

The curves in Figures 1 and 2 remain unchanged under 
the submodel in which the variance c2 is known and thus 
0 = -y. Results of Bayarri and Berger (2000) imply that un- 
der this submodel, the cdf's, ARPs and AREs in Figures 1 
and 2 are exact at each sample size n, under the noninfor- 
mative prior wF(-y) oc 1. 

3.2 Example B 

Stigler (1977) provided data on Simon Newcomb's n= 
66 measurements for estimating the speed of light, with 

each measurement Xi recorded as a deviation from 24,800 
nanoseconds. Gelman et al. (1995, sec. 2.2) modeled these 
data as n iid draws from a N(Q, c2) distribution, with a 
noninformative uniform prior on (,u, log c). To look for in- 
compatibility of the data with the N(,, c2) model in the left 
tail of the distribution, they computed a posterior predictive 
p value with t(X) = min{Xi; i = 1, ... I, n}, the first-order 
statistic (Gelman et al. 1995, p. 166). A reasonable alter- 
native choice for T t(X) would be the empirical qth 
quantile of X, T =Zq sup{t; n-> >i I(Xi < t) < q}, for 
a small value of q (say, q .05), which we use in place of 
the first-order statistic because, in contrast to the latter, it is 
asymptotically normal and covered by our large-sample the- 
ory. The asymptotic mean of T = Zq under the normal null 
model is the population qth quantile of a N(,, c2) distribu- 
tion; that is, zq (O) = Zq (i, c2) = ZqC + I, with Z Zq Zq(O, 1), 
which depends on 0 = (,u, c2). Hence we expect both the 
plug-in and posterior predictive p values to be asymptoti- 
cally conservative. Figure 3 shows the curves actual(.05, 0), 
ARP(.05, .8, 0), and ARE(.05, .8, 0) for our candidate p val- 
ues as a function of q, none of which depends on the value 
of 0 generating the data. Note that as discussed in Corollary 
1 we did not have to specify the alternative model f (x; V9, 0) 
under which the ARP and ARE are calculated. 

A natural discrepancy measure generalizing the test 
statistic t(X) = Zq is t(X,0) = Zq - zq(0), the dif- 
ference between the empirical and the true qth quantiles 
of the null model. Because t(X) > t(x0bS) iff t(X, 0) > 
t(XObs, 0), Pdis (X) and Ppost (X) are equal with probability 
1, and so they have identical distributions. 

3.3 Example C 

Gelman et al. (1995, pp. 171-172) also analyzed New- 
comb's speed of light data using a discrepancy p value based 
on 

t(X,0) = 1Zi-q -/1 - -ZqI 
with q .1, to check whether or not the magnitude of 
skewness, as measured by t(xobS, 0), was compatible with 
a N(Q, c2) distribution. Note that under the null model 
N(,, c2), t(X, 0) has asymptotic (and exact) mean 0 for all 
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Figure 3. Example B. (a) Actual(a, 0) for a = 5% as a Function of q, (b) ARP(a, /, 0) and (c) ARE(a, /, 0), for a = 5% and / = 80%. The 
vertical axes of (a) and (c) were truncated for quality of display. (-- plug, * post, - - - cplug, -- ppost, cpred). 

0 = (,u, c2), because the Xi have a symmetric distribution 
centered at ft. A natural test statistic related to the dis- 
crepancy t(X, 0) is t(X) = Z-q Zq because, on a set 
with probability going to 1, t(X, 0) = Zi-q + Zq - 2,u un- 
der the null model and any local alternative. On this set, 
t(X) > t(xobs) iff t(X, 0) > t(Xobs 0), and so PdiS(X) 
based on t(X, 0), and ppost(X) based on t(X), have the 
same asymptotic distribution. Figure 4 shows actual(.05, 0), 
ARP(.05, .8, 0), and ARE(.05, .8, 0) for our candidate p val- 
ues based on t(X), as functions of q, none of which depends 
on the value of 0 generating the data. 

3.4 Derivation of the Results 

We now show how the quantities av(0), Q(0), and NC(0) 
were obtained for the test statistics and discrepancies in 
Examples A-C. 

Example A. Here 0' = (01, 02) Cy,C2), Xi N(wpi + 
'yvi, c2), and t(X) = n-rX'w. We assume that at each sam- 
ple size n, the vectors of constants (v, w) (va, wn) are 
chosen such that n-lv'v, n-lw'w, and p =n-w'v do 
not depend on n. Then the asymptotic mean of t(X) is 
7v,(Vl, 0) = Vl, | 1p. Also <^ 7;( = (p n) 7;, 88- 0)=1, g2 (0) 

02, iOO (0) = diag(02-, 1/202-), iO(O)/ = (02-1p,O), 5(O) = 
p202, and w(0) = 1 _ p2. For the discrepancy, t(X, 0) = 
rlSg4(0) = n - I 0j- (Xi - 0Ivi)wi, Vl2(/)0*: 0) = 

Ep,o* {t(X, 0) } = (0o*) 1 {f + (0* - 01)p}. Hence vao(0) = 
(pjO)'0j-Ij%P(0) = 0-1,U2(0) - 0;1 ,Q(0) = 0Ip2 , and 
w(0) = (1 _ p2)051 

Example B. Here t(X) Zq, and under f(x; 0),Xi 
N(Gu,c2) with 0' = (01,02) (pI,c2). Then v (O,0) = 
0 1/2Zq + 01, and hence vo(0) 

- (1, 0-1/2zq/2),ioo(0) = 
diag(1/02, 1/202), and Q(0) = 02(1 + Zq2/2). Further, it is 
well known that if the Xi are iid under any law f (x; 0), 
then 

n1/2 (q - zq(O)) 

n-1/2-f [zq(O); op-1 Z I(Xi < zq(0)) + Op(1). 
i 

Hence au2 (0) f (Zq (0); 0) -2varo {I [Xi < zq(0)]}, which, 
for our N(01, 02) model, evaluates to 

a2 (0) = 02q0-2(zq)q(l -q) 

where q is the standard normal density. Further, under 
f(x; k,/Vni, 0), it follows from Theorem 3 that Ap(0) = 

6 
0 ~~~~~~~~~~~~~~~~~- 0 ~ ~ - - - - - 

6 0) 
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q q q 
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Figure 4. Example C. (a) Actual(a, 0), (b) ARP(a, /, 0), and (c) ARE(a, /, 0) as Functions of q for a = 5% and / = 80%. The vertical axes of 
(a) and (c) were truncated for quality of display. (-- plug, . post, - - - cplug, -- ppost, cpred). 
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EO[-f (zq(O); 0)-1I(Xi < z(jO))SV,,i(O)], where S,p,i(O) is 
the contribution of subject i to S (0). For the discrepancy 
t(X,) =0) Zq zq(O), all of the relevant foregoing quan- 
tities are the same as for t(X) = Zq, but with v,(0, 0*: 

0) _ zq(0*) _ zq(0) = 0*l/2z + 0* - (0/2zq + 0). 

Example C. In this example, t(X)= Zq + Z1-q, where 
Xi N(u), = ( 01,02) ==u,c2); so as in Exam- 
ple B, ioo(O) = diag(1/02, 1/202). It follows from the re- 
sults of Example B that Vn (0, 0) = 01/2 (zq + ZI-q) + 201, 
and so that %o(0) = (2, 0), because Zq + Z1-q = 0. Thus 
Q(0) = 402. Further, it follows from (4) that a2(0) = 

varo{-f (zq(O); O)-1I(Xi < zq(O))-f (zliq(O); O)>11(Xi < 
zI-q(0))}, which for our normal model evaluates to a2(O) = 
2q-2 (zq). All the relevant foregoing quantities are the 
same for the discrepancy measure t(X, 0) = 12-q - A1 - 
It - Zq as for t(X) Zq + Z1-q, but with vn(0,O*: 
0) - 2(0* - 01). 

4. ALTERNATIVES TO Pcpred AND pppost 

It follows from Theorems 1 and 2 and Corollary 1 that 
from an asymptotic frequentist viewpoint, Pcpred and Pppost 
are preferred to our other candidate p values when the 
asymptotic mean of t(X) depends on 0. This result still 
leaves open the question of why we should want to use 
a test statistic with nonconstant asymptotic mean. Bayarri 
and Berger (2000) argued that this is desirable because it 
does not restrict the choice of possible measures t(X) of 
departure from the null model; the preferred, or intuitive, 
choice may happen to have a nonconstant asymptotic mean. 
So suppose that our choice t(X) satisfies (3a)-(3c), with 
io (0) :& 0. Now Pcpred and Pppost are sometimes difficult 
to compute (Bayarri and Berger 1999, 2000; Pauler 1999), 
and alternative approaches might be useful. We consider 
two; the first is to replace t(X) with a closely related test 
statistic that has a constant asymptotic mean; the second ap- 
proach is to adjust (i.e., calibrate) those candidate p values 
with nonuniform asymptotic distributions. We also describe 
how to modify a discrepancy measure so that the discrep- 
ancy p-value is asymptotically uniform. 

4.1 Modifications of t(X) and t(X, 0) 

One alternative to computing Pcpred or Pppost based on 
t(X) is to compute Pplug or Ppost based on the statistic 
i(X) = t(X) - v, (), where vn (6) - vn (0, 0), because, 
by a Taylor expansion, t(X) is asymptotically normal with 
constant asymptotic mean 0 and asymptotic variance 

c2(0) = U2(0) _ -S (0)1i-l(0)1S (0) 

under the null model. It then follows from Theorem 1 that 
pplug (X) and Ppost (X) calculated using t(X) are asymp- 
totic frequentist p values with limiting distribution under 
f (x; kn/ ri, 0), equal to that of Pppost(X) and Pcpred(X), 

because NC(0) is the same for t~(X) and for t(X). But be- 
cause in general t(X) is not asymptotically pivotal [as its 
asymptotic variance c2 (0) depends on 0], Pplug and Ppost of- 
ten will be calculated by simulation using the fact that, for 

example, 
K 

Pplug limK1 ZI((X(k)) > j(Xobs)), 
k=1 

where X(k) - (X(k),... ,X) are K independent draws 
from f (X; Oobs), and i(XObs) = t(xobs) - Vn(Obs). A poten- 
tial drawback of this approach is that to evaluate E(X(k)) = 
t(X(k)) - Vn (69(k)), the maximizer 0 (k) of f (X(k); 0) must 
be recomputed for each simulated dataset X(k). The com- 
putational difficulties could be overcome by substituting for 
0(k) a single Newton-step estimator starting from the orig- 
inal MLE 0. Similarly, in the case of Ppost, the posterior 
distribution of 0 must be recomputed for each dataset X(k), 
which also may be computationally impractical. Again, the 
computational difficulties could be overcome by substitut- 
ing an easy-to-compute normal approximation to the pos- 
terior. 

To avoid having to recompute (either exactly or approxi- 
mately) the MLE or the posterior density of 0 for each simu- 
lated dataset, two additional approaches may be considered, 
both of which give p values that are asymptotically equiva- 
lent to Pppost (X) under both the null model and local alter- 
natives. The first approach is to replace t(X) by the asymp- 
totically pivotal N(O, 1) random variable i(X)- i(X)/c(O). 
We then obtain an asymptotic frequentist p value Ppivot 
based on t(X) by using m(t) = N(O, 1) in (1); specifi- 

cally, Ppivot 
= 1 - [i(Xobs)]. The second alternative is to 

calculate a discrepancy p value based on the discrepancy 
i(X, H) = t(X) - vn(0) - va0(0)/i_1(H)n-1SO(H). 

Indeed given any discrepancy t(X, 0) with Eo [t(X, 0)] - 

O the discrepancy p-value Pdis based on the modified dis- 
crepancy 

t(X, 0) - t(X, )i (-)tz- 
I 
So (H), 

is, by Theorem 3, uncorrelated with SO (0) and thus an 
asymptotic frequentist p value with 1% (0) as defined in The- 
orem 2. As emphasized by Meng (1994), neither the MLE 
nor the posterior distribution of 0 needs to be recomputed 
when calculating Pdis by simulation. 

A drawback of these latter approaches is that they can 
require computation or estimation of a2 (0)J n(0) I v(0), 
and/or ioo(0), which may be computationally difficult. But 
an important advantage of the last approach is that if we 
take t(X, 0) equal to n-1SQ,(0), then i(X, 0) becomes the 
"efficient score" discrepancy 

t^(X, 0) - n~1S,,(Q) - iPo (0)'ij (0)n-71So(0) (8) 

and the test Xdis based on Pdis is a locally most powerful 
asymptotic a-level test of 9 = 0. 

4.2 Adjusted p Values 

Another class of alternatives to Pcpred or Pppost are the 
adjusted (i.e., calibrated) p values Ppost,adjiPplug,adj9 and 
Pcplug,adj, where for any candidate p value p(X) with ob- 
served value p =PXb) 

Padj -Pad; (xobs ) -Fpx) [P; Sobs]jv 
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where Fp(x) (u; 0) is the cdf of p(X) when X f(x; 0) 
(Davison and Hinkley 1997, p. 132). Beran (1987) intro- 
duced adjusted p values in bootstrap context as a means 
of calibrating asymptotic uniform p values so that they be- 
come second-order correct, whereas we use them here to 
render asymptotically nonuniform candidate p values first- 
order correct. When estimated by simulation, Pplug,adj iS 
precisely the "double parametric bootstrap" p value of Be- 
ran (1987) and Davison and Hinkley (1997, p. 177); the 
computation burden of such simulations can perhaps be al- 
leviated by recycling (Newton and Geyer 1994). A double 
bootstrap simulation may be avoided because the represen- 
tation p(X) = 1 - N(Q) + op(l), under Ho, of Theorem 1 
implies that Padj,anal = 1 - (D[T-1(0)z1_p] is a simple ana- 
lytic approximation to Padj* It is easy to show that for any of 
our candidate p values, both Padj (X) and Padj,anal (X) have 
the same limiting distribution as Pppost (X) and Pcpred (X) 
under f (x;. kn/ , 0). 

Given a candidate p value defined via (1) with reference 
density m(tlxOb,) mT(tlXOb,), define the adjusted refer- 
ence density evaluated at tobs to be 

madi (tobs |Xobs) = fp(x) [P; Oobs]m(tObs IXObs), 

where fp(x) (u; 0) = 8Fp(x) (u; 0)/au and p p(tobs). Then 
Padj is obtained via (1) with m(t) = madj(tlXobs). These 
densities rnadj(tlXobs) are additional solutions to the fre- 
quentist math problem of Section 1.3. 

To summarize this section, we have proposed alternative 
candidate p values that have the same limiting distribution 
as Pppost (X) and Pcpred (X) under the null model and local 
alternatives. Thus the corresponding nominal ae-level tests 
X(aE) have the same asymptotic power as the tests Xppost (oz) 
and Xcpred (0Y) based on t(X); that is, ARP(a, 13,0) = 13 and 
ARE(a, 3, 0) = 1. The choice as to which p value to use in 
practice will depend both on the relative ease with which 
each can be calculated and on their second-order asymp- 
totic and small-sample nonasymptotic distributional prop- 
erties. These topics are beyond the scope of this article, al- 
though example 2.1 of Berger and Bayarri (2000) suggests 
that Pppost and Pcpred will be preferred to Ppost and Pplug in 
small samples, even when the mean of t(X) does not depend 
on 0. When one has a specific alternative model in mind, 
a major advantage of the discrepancy p value based on the 
efficient score discrepancy (8) is that it is guaranteed to be 
locally most powerful whatever the value of 0 generating 
the data. 

5. PROOFS OF THEOREMS 1 AND 2 AND LEMMA 1 

The first theorem in this section, Theorem 3, derives the 
asymptotic expansion 

p(X) = I - @D(Q) + op(l) (9) 

for a particular random variable Q. Theorem 3 and corol- 
lary 3 allow us to deduce that Q has the N(kpi(0),T2 (0)) 
distribution specified in Theorems 1 and 2. All of our can- 
didate p values, including Pdis but excluding Pcpred, can be 

written as 

P P(Xobs) 

=XPr [t(X I0) > t (Xob,,0); 0] -F(d|O IXb,) (10) 

By taking t(X, 0) = t(X), we obtain the nondiscrepancy 
p values. Here wF(dO xObS) = wF(0 xobS)dO is given in Table 
1 for Pppost and Ppost. We take 7dis(. XObs) = wFpostH XObs). 
For pplug and pcplug, we take wr(dOIxobs) to be the degenerate 
distribution that places all of its mass on Sobs and kcMLE,obs 
When we take 7w( IxObs) in (10) to be 7rcpred( IXobs), we ob- 
tain a new p value, the approximate conditional predictive p 
value, Pacpred, that we show in Lemma 2 is asymptotically 
equivalent to Pcpred. Hence it will suffice to prove Theorem 
1 for Pacpred in lieu of Pcpred It will be useful to have an 
expression for the random p value p(X); specifically, 

p(X) = Pr[t(Xnew, 0) > t(X, 0) X; 0]ir(dO X), (11) 

where Xnew is drawn from f(x; 0) independently of X. 
We prove Theorems 1 and 2 together. The asymptotic 

normality of t(X, 0) remains a basic assumption. Now if 
t(X, 0) is allowed to depend on an additional parameter 0, 
then it is natural to allow the asymptotic mean and variance 
of t(X, 0*) under 0 to also depend on 0*. Thus we assume 
(3), but with vzn(b,0) replaced by vn(Vb,0: 0*) and ou2(0) 
replaced by o92(0: 0*). These quantities are the asymptotic 
mean and variance of t(X, 0*) under 0. 

Actually, because the measures ir(dO X) concentrate on 
small (shrinking) neighborhoods of 00, the dependence of 
t(X, 0) on 0 does not play a major role, as soon as we 
assume some natural continuity in this parameter. Specif- 
ically, we assume that for every random sequence On - 
00 + Op(n-1/2), 

nl1/2{t(X, fn) - V1n (O O: 0 fn)} 
uJ(0: 00) 

n1/2{t(X,I o) -_ v(nO, o: 0)} Poo 

u-(Oo: Oo) -0, (12) 

which we take as trivially true when t(X, 0) - t(X). Fur- 
ther, we assume that for some p-vector-valued function 
Ot(X) on the sample space and some p x p matrix E(0o), 

i1-r( lX) - N(Ot(X), E(0o)/n) l 0 (13) 

and 

nl/2(t(X) - 00) = Opoo (1). (14) 

Here is the total variation distance between two dis- 
tributions P and Q: IIP - Q = 2SUPs IP(B) - Q(B)II 
with the supremum taken over all Borel sets in Rp no . Let 
(0(0S) v-(Oo: ),>o(00o) = 1imn, 009vn(0,0: 00)/09010=0o 

and z>%(0) 1imn,,,09Vn(/),0: 0)/19)=?. Then, under 
conditions discussed later, (13) and (14) hold for the choices 
of Ot(X) and E(0o) specified in Table 2. 

Theorem 3. Suppose that (12)-(14) and (3) hold with 
t(X, 0) and vn(0, 0: 0) replacing t(X) and vn(0, 0). Then, 
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Table 2. Values of Ot and E 

Method ot(x) () 

Plug-in 0 
Posterior predictive and discrepancy 0 ij1 (00) 
Conditional predictive and approximate conditional predictive 0cMLE iCj0(0o) -{ioo(-o) 

Partial posterior predictive 6cMLE ic 1o(00) 
Conditional plug-in 0cMLE 0 

under X f(x: 00), 

p(X) = 1 - 4?(Q) + op(1), (15) 

where 

nl/2 {t(X, So) _-n (O oo: 00)} 
Q -N (0) /n1/2 {t (X)_- 16} 

[u2 (00) + >o (00)/E(00)z (00)] 1/2 (16) 

As this theorem is our main result, we give an informal 
proof that emphasizes the main idea. We give a formal proof 
in Appendix A. 

Informal Proof of Theorem 3. Note that t(Xnew,0) > 
t(X, 0) is algebraically equivalent to 

nl/2 {t(Xnew I 0) -_vn (O, O: 0)} 
- n 1/ 2 vn (?I 0: So) _-Vn (?0: 300S)} 

> n1/2 {t(X O)-vn(O0o: 0)} 

- n _ {vn(? (0 So -n : 030S)} (17) 

Now, by (13) and (14), we can asymptotically ignore all 0 
that are not within 0(n-1/2) of 00. Hence by (12), the left 
side of (17) is approximately 

n1/2{t(Xnew 00) - vn(O Oo: 00)} 
- n1/ 2{vn(O0: 00) -vn(O0I0: So)} 

- nl/2 {t (Xnew I o ) -Vn (?, 0: 00) }. 

By (12) and the differentiability assumption in (3b), the right 
side of (17) is approximately 

n{t(X, 00) - vn(O Oo: O0)} - N(Oo)' 12(0 - Oo). (18) 

Hence the event t(Xnew I0) > t(X, 0) is approximately 
equivalent to the event 

V{t(Xnew 00) -Vn (O 0: 00)} ?+ >0 (0o)' I(O - 00) 

> {nft (X,I So) -Vn (? Ifo: fo)}. (I19) 

Now conditional on (X, 0), by (3a), the first term on the 
left side of (19) is approximately N(O, o2(0)), and, given 
X, by (13), the second term on the left side of (19) is con- 
verging to a N (vo0(00)/n1/2 (ot (X) _0), I o0(00) I E(00) (00)) 
distribution. Further, because the first term has mean 0 con- 
ditional on (X, 0), the two terms are conditionally uncor- 
related given X. Hence, given X, the left side of (19) is 
asymptotically 

N (i% (00) ' (0t (X) - O), (J2 (00o) 

+ AYo(0o)'(0o)No (0o)). (20) 

It follows that the conditional probability, given X, of the 
event t(Xnew, 0) > t(X, 0) is approximately 1 - 1(Q) with 
Q as in (16), which concludes the proof. 

Under the assumption that the distribution of X under 
(b/)n? Ao) and (0, Oo) are contiguous (which will quite gener- 
ally be the case), the expansion of Theorem 3 is also valid 
under X f (X; l/)n, Qo). It remains to show that the distri- 
bution of Q in (16) converges to the N(u(0o)IT2 (0o)) dis- 
tribution given in Theorems 1 and 2. For this, we need the 
joint distribution of t(X, 00) and Ot (X). 

In all of the examples that we consider, we will have 
for given "influence functions" Bi(0: 0) that for all 0 in a 
neighborhood of 00, with X f (x; 0o), 

n1/2[t(X, 0) - Vn(0, Oo: 0)] 

n T-1/2 Bi(0o: 0) + op(l) (21) 

for some mean 0 Bi(0o: 0) = bi(Xi, Oo: 0), 

nl/2(- 00) = i(Oo)n-r1/2So(0o) + op(l), (22) 

n1/2 (kMLE 
- 00) 

ic oo(0O)-1{n- 1/2Sco(0O)} + op(l) (23) 

where 

S co(00)= SO (00) - '>0(0o)u-2 (0o)nl/2Tstd (00), (24) 

Tstd(0O) =n 1/2{t(X) - Vn (0,IO: Soo)}, 

and ic,oo (00) is defined in Table 2. Equation (21) is the usual 
asymptotically linear expansion of an asymptotically nor- 
mal statistic, showing that it behaves like a sample average, 
and (22) is the usual expansion of the MLE. Equation (23) is 
a conditional version of (22), which we discuss further later. 
Given the foregoing expansions, the joint limit distribution 
of t(X, 0) and Ot under the null hypothesis (l/)n = 0,0o) fol- 
lows immediately from the multivariate central limit theo- 
rem (CLT) (where we need to assume the Lindeberg-Feller 
conditions to take care of the possible non-iid character of 
the terms in the sums). Note that the right sides of (22) and 
(23) are also sums. The expansions (22) and (23) imply that 
the asymptotic variance of the MLE and conditional MLE 
are izo (0O) and iC,oo(0o)-1. To obtain the limit distribution 
under alternatives (/)n, Oo), we make the further assumption 
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that as n -+ oo, for (kg, k*)' -+ (k', k*)'- hi 

1f(X; kn2/n n0o?kW In) log f (X; 0o ) 

- h'n-h/2(Si(0 ),Se(00)')'--h'i(0o)h+ op(1) (25) 2 
and 

n-l/(+0) S0 ) 0? N (O,I i (00)) (6 

where 

i(0o o ( fX(00) ioo (0o)) 

and we assume the sum on the right side of (21) satisfies 
the Lindeberg condition. Equations (25)-(26) imply that the 
model f (x; Vb, 0) is locally asymptotically normal (LAN) at 
(0, Oo). Therefore, we can apply LeCam's third lemma to 
obtain the desired result (van der Vaart 1998). Specifically, 
we obtain the following theorem. 

Theorem 4. Given t(X, 0) and model (2a)-(2b), suppose 
that both (21)-(26) and the assumptions of Theorem 3 hold. 
Then the following obtain: 

a. vV,p(0o) = cov A 
(Tstd(Oo) I n - / 2S'O (00)), 

'>o(0o) = cov A (Tstd(0O), n 1/2So(00)), (27) 

where covA (S1, S2) denotes the asymptotic covariance 
of Si and S2 under ( = 0, Oo). 

b. When X - (x; kn/ V;H, Oo), (Tstd(0o), ~o (0o) n 1/ 20 

00)) converges to a normal distribution with mean 
k (vf, (0 ), I 1o (0 ), /i 

- 
(0o ) 

io (0o)) and covariance matrix 

(22(0o) Q(00) N(28 
K Q(00) Q(00) ) 

and thus TStd(Oo) - z>(0o)'nl/2{O- _00} converges to 
a N(kw(0O), -2(0) - Q(00)) distribution. Further, 
(TStd(0o), z>o(0o)/nl/2 (OcMLE-0o)) converges to a nor- 
mal distribution with mean k(z>%(Qo), 1o(0o)'i-10(O) 
ic,,oo (0o)) and covariance matrix 

(12(0 Q( ), )' (29) 

where icv,o (0o) = cOVo [n-1/2S (0o),I n1/2SCo(0o) 
and Qc(0o) = N(00y'ijo(0oo)1o(0o). Thus TStd(Oo) 
No(0o)'nl/2{GcMLE - Oo} converges to a N(kwc(0O), 
uJ2(0o)+Qc (0o)) distribution, where wc (0o) = vO (0Oo)- 
vo0 (00)' i 

- 1 
(0o) ic "O (0o) 

Remark 6. A critical observation required in applying 
LeCam's third lemma to obtain the results in Theorem 4(b) 
is that 0 = covA (Tstd(0o) In - 1/2S co(0o)), which is a conse- 
quence of the fact that, by (27), n-1/2Sco(0o) is the residual 
from the asymptotic least squares projection of n-1/2So (Qo) 
on the normalized test statistic TStd (Qo), because 

n /2Sco (0o ) =n71/2S (Oo) )-covoO(So (0o ), TStd(0o) ) 
x {varoO(TStd (0o) ) }TStd (0o ) 

As shown in Corollary 3, Theorems 1 and 2 follow from 
Theorems 3 and 4, provided that we can establish that (13) 
and (14) hold for the entries in Table 2. The first row of 
the table merely asserts asymptotic normality of the MLE 
and hence is valid under the usual conditions. The second 
row is the assertion of the Bernstein-Von Mises theorem 
and hence is valid under even weaker conditions. Primitive 
conditions to ensure the validity of the last three rows of 
Table 2 are less easily available. We do not provide such a 
set of conditions, but rather offer below an informal argu- 
ment as to why these rows are expected to be correct. 

Corollary 3. Under the assumptions of Theorem 4, if 
(13) and (14) hold for the entries in Table 2, then, with 
Pacpred substituted for Pcpred the p values considered in The- 
orems 1 and 2 have the asymptotic expansions given therein. 

Proof of Corollary 3. For the plug-in, posterior pre- 
dictive, and discrepancy p values, the proof is immediate 
from Theorems 3 and 4. [Note that if the off-diagonal 
entries in (28) were 0 rather than Q(0O), then, even if 
the variance of z>e(00)'n1/2(O - Oo) had remained nonzero, 
Q for the partial posterior and discrepancy would have 
had variance 1, and the associated p values would not be 
conservative. But the covariance Q(0O) is in fact nonzero 
whenever >o (0O) is nonzero.] Furthermore, it is immedi- 
ate from Theorems 3 and 4 that expansion (16) holds 
with Q N(kwc(00)/{(u2(O0)+Qc(00)}1/2, 1) forpppost(X) 
and pacpred(X) and Q N(kwc(0O)/u(/O-),{u (00 ) ? 
QC(0o) }/u-2 (00)) for pcplug (X). But some algebra shows that 
{fu2(0o) + Qc(OO)}/Ju2(O) = uJ2(0O)/{2(0O) - Q(0o)} and 
WC(0o)/{O-2(0o) + Qc(0 )}1/2 = NC(0o), which proves the 
corollary. 

To complete the proof of Theorem 1, it only remains to 
show that Pcpred(X) and Pacpred(X) have the same limiting 
distribution. The key observation is that, as discussed ear- 
lier, 6cMLE and t(X) are asymptotically uncorrelated, so that 
in large samples the conditional distribution given 6cMLE 

and unconditional distribution of t(X) are the same. For- 
mally, we have the following lemma, whose proof is similar 
to aspects of the proof of Theorem 3 given in Appendix A 
and thus is omitted. 

Lemma 2. If for every c, 

sup sup I Pr{t(X) < tl6cMLE; 0} 
j0-0o j<(c/V/'n_) t 

- Pr{t(X) < t;0}| 40 , 

then Pcpred(X) and Pacpred(X) have the same limiting dis- 
tribution under f(x; kn/rId, Oo). 

The supposition of Lemma 2 would need to be checked 
on a case-by-case basis, as general regularity conditions for 
it are not known. 

Conditional Inference. If our given statistic T =t(X) 
satisfies (3), then we would expect the marginal model 
fT(t; b, 0) -f(t; b, 0) to be LAN. That is, under T 
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f(t; 0o) f(t; O, 0o), 

1g f(T; k0/ ooo?+k l = h'v(Oo)o-2 (0o)Tstd(fo) 

-2- [h'i>(0o)]2/u-2(0o) + op(l). (30) 2 

Together with the similar expansion (25) for the uncon- 
ditional model for X, we obtain, on noting f (X) 
f (XI T)f (T), that 

lo0gf(XIT; kn/n 00 + kn)/n) 
log ff(XIT; 0O, o) 

1/2SC~~ h'n -2S (0o) - -hic(0o)h + op(l), (31) 2 

where 

SC(00) (Sc (00),sco(00) 

Suo (00) S'0 (00) - (00) 2(0o)n1/2 TStd (00) 

and 

K ic'0(0o) icoo(0o) J 
is the asymptotic covariance matrix of n-7/2S (00). The 
vector Sc(0O) is referred to as the conditional score because 
it is the linear term in the expansion of the conditional den- 
sity, and ic(OO) is the conditional information matrix. As 
noted earlier, n-1/2Sc(00) is the residual from the asymp- 
totic least squares projection of n-1/2S(0o) on the normal- 
ized test statistic TStd(0o). 

Note that if n/2{T - vn(kn/ /;i0o + k*JT)} were 
exactly distributed N(O, u2(o-)) under fT(tkn/ni 0O + 
k*/ Ti) with vn(k/1V,00 + k*/ nT) = vn(0O00) + 

Tin/ +? >0(00)'k n then (30) would be exactly 
true without the op(l) term. But to establish (30) for gen- 
eral asymptotically normal statistics T requires additional 
regularity conditions, which we discuss in Appendix B. For 
example, we show that if T = n-1 Ei d(Xi) and the Xi are 
iid, then (30) holds if d(Xi) has either an absolutely con- 
tinuous component or d(Xi) is discrete with finite support. 

The expansion (31) is the basis for deriving the asymp- 
totic distribution of the conditional MLE and the validity of 
the last three rows of Table 2. First, the expansion suggests 
that 6CMLE maximizing f (XIT; 0) satisfies (23). The expan- 
sion (23) is similar to the expansion (22) for the uncondi- 
tional MLE, but with the conditional score and information 
substituted for the unconditional ones. Second, we may ex- 
pect a conditional Bernstein-von Mises theorem to hold. 
Basically, what is lacking for a full proof of these results is 
a proof of Ti consistency of 0GMLE and Ti consistency of 
the conditional posterior. These are not trivial matters, but 
they are of a technical nature and do not add to our knowl- 
edge of the form of the limits. This form is determined by 
the expansion (31) only. We content ourselves with provid- 
ing in Appendix B exact conditions for the validity of the 
structural expansion (31) and sketching in Appendix C a 
direct proof for Example B of Section 3. 

Proof of Lemma 1. We only need to prove the lemma 
in the special case where t(X) = n-lS,(0*) because, from 
its definition, NC(O*) will be the same for a given statis- 
tic ti(X) and all affine transformations of ti(X),t(X) = 
at, (X) + b + op(l), with a 0 0. Now, by Theorem 4, for 
t(X) = n-lSV,(O*), 

and 

ii (O) - ij0(*), 

which proves the lemma. 

APPENDIX A: PROOF OF THEOREM 3 

By (14), we have that with X f(x; Oo), for all ? > 0, there 
exists a constant c, such that 

Por{ E(X [If 110 
- 

?ollI < c,/ r}lIX] > 1 -?} 

> 1-i, (A.1) 

where EN(,p,z) refers to expectation with respect to a normal dis- 
tribution with mean ,u and variance matrix E. Equation (A.1) 
says that with large probability, X is such that when 0 
N(Ot (X), E(Oo)//n), 0 lies in the ball of radius c,/ I around Oo 
with high probability. 

Now, because the total variation norm IIP - QI is also equal to 
2 supf{l f f dP-f f dQ: 0 < f < 1} and0 -+ Pr(t(Xnew, 0) < 

t(X, 0)IX; 0) is uniformly bounded by 1, we have, by (13), that 

p(X) J Pr[t(Xnew, 0) > t(X, 0)IX; 0] (O; Ot(X), E (Oo)//n) dO 

+opoO(1), (A.2) 

where /(0; ,, E) is the density of a N(,u, E) random variable and, 
in (A.2), the integrand can be defined in an arbitrary way for 
O X E. 

Now if we restrict the integral to the set {0: 110-0oll < c,/ ri}, 
then it changes at most by EN(ot(x) ( o)/? )[I{lO - 0oll > 

c6/NF} IX], which, with probability at least 1 -,E, is less than ?. 
Let A, be the event on which this is true, so that Proo (A,) > 1 -,. 
We can write the integrand as Pr [Eq. (17)1X; 0]. By (12), we have 
that for On0 O+O( 1/V/Hi), nl/2(t(Xnew, On) -V n (0,: 0n)) - 

n r'/ 2(in(0 n: O00) - Vn(0, Oo: O)) = nl/2(t(xnew, 00) - Vn (0, 0: 
Oo)) + opoo (1). By the contiguity assumption in (3), this is true 
also for the remainder term opo (1). By (3a), i/lf(Oo) times the 
right side of the last equality is asymptotically standard normal 
under On. Thus for every c, 

sup sup I Pr(n1/2 {t(Xnew, 0) - Vn (O, Oo: 0)} 
j0-0o j< (c/,/;i_) t 

- n1'2{Vn / (0, 0: 0) - Vni(0, Qo: 00)} < t; 0) 

- 1(t/uf(Oo))l X- 0. 

Next, by (3b) holding at 0 and (12), for every ?n 0= + 
Op(1/ ri), 

( t n/2(t(X, On) - Vn(O,On: ?0n)) 
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(I 12 (t (X, Oo) _-," v(O, Oo: Oo))\ 
->o (0o)'n1/2 (0 - Oo) 

- (Oo) I 

07(oo)~ ~ l~lo 
< In' / 2(t (X, fJn) -Vn (0, 00: fJn)) 

- n1/ 2 (t (X 00) -Vn (0, 00 00)); 
II IIC 

) 

+ In /2 (Vn (O, 0n: 0: ) - Vn (O, O: Qo)) 

- z>o(0o)mn1/2(0n - 0o)0 1 -1 0, 

where kbf0l00 is the maximum of a N(O, 1) density. By combining 
the two previous displays, we see that 

sup |Pr(t(X ,ew 0) < t(X, 0))IX; 0) 
Jj0-00jj|<(cE/1V6) 

n 1/2 (t (X, 0) -Vn (0, 00: t00)) 

-@ |- ~~70 ( ? ) (n 1) (o ? ) )PO ? 
- u~~~~~~7(Oo) O) * 

Now, by combining this display with (A.2), we obtain 

( ml/2(t(X, 0o)-Vn (,00: o)) 

1 -p(X) - CD - -uo (0o) /n1/2 
(-( ) ) 

x 0(0; Ot(X), E (0o)/n) dO 

? 2EN(ot(X)>E(oO/n)) [I{ fl - Oofl > c/,1 mX}] 

+ opO (1) < 2e1(X c A,) + I(X 0 A,) + opoo (1). 

This being true for every E > 0 implies that 1 - p(X) is asymp- 
totically equivalent to 

(n /2 (t(X5 O0)-Vn (0,Oo: 00)) 

- vo(0o)/'-1 (0o)n /2 (O - 00)) 

x 0 (0; t (X)) E (0o) /n) dO = -cD(Q)) 

where Q is given by (16). 

APPENDIX B: ASSUMPTIONS IMPLYING LOCAL 
ASYMPTOTIC NORMALITY 

Lemma B.]. Suppose that (21), (25), and (26) hold for a statis- 
tic T = t(X). Furthermore, suppose that under f(x; k/Im, Oo + 
k* mV), 

{T-Vn (k/ m,0o + k m0) } (B. 1) 

converges in variation distance to a N(O, a2 (0o)) distribution for 
all k I R1, k* c Rp. Then (27) holds. 

Idea of Proof: The lemma is essentially a consequence of the- 
orem 4 of LeCam and Yang (1988), because in their terminology, 
our assumptions imply that m112(T - vn(g, 0))) is distinguished in 

local experiments indexed by (t, 0) = (k/lm, Oo + k*/ m) with 
0o known. Details will be presented elsewhere. 

If our statistic T equals n-1 E d(Xi), then condition (B.1) is 
satisfied for h = (k, k*) = 0 if d(Xi) has a finite second moment 
and the distribution of d(Xi) has an absolutely continuous compo- 
nent and the Xi are iid. This follows by theorem XV.5.2 of Feller 
(1971). For general h, (B.1) will be true if we make these con- 
ditions uniform in 0 running through a neighborhood of 00. For 
more general asymptotically normal test statistics T, results such 
as (B. 1) appear to be usually established as part of the derivation of 
an Edgeworth expansion for the distribution of T. (A discussion, 
with special attention to curved exponential families, and further 
references have been given in, for example, Ghosh 1994, chap. 2.) 
Results of this type are nontrivial. The use of the total variation 
norm makes (B. 1) much more restrictive than convergence in law 
of nm/2(T-vn(k/lV fJo + k*/ )) 

Condition (B.1) is certainly stronger than needed. It would be 
sufficient that the sequence n"/2 (T - vn (t, 0)) be distinguished 
in local experiments consisting of observing T with parameter 
(0, 0) = (k/lm, 0o + k*/in-), with Oo being known, and k c R' 
and k* c RP. This concept was discussed by LeCam (1986), along 
with sufficient conditions, but the discussion is involved. 

We now discuss an important special case in which (B.1) can 
be relaxed. If T = T, is lattice distributed with the span of lattice 
possibly depending on n, but not on 0, then observing Tn is sta- 
tistically equivalent to observing a smoothed version of Tn, if the 
smoothing is performed within the intervals generated by the lat- 
tice. In this case it can suffice to verify (B.1) for smooth versions 
of the law of Tn. We make this precise in the following theorem. 
We assume that Tn = n-1 E> d(Xi) with d(Xi) taking its values 
in a grid of points . .. , a - s, a, a + s, a + 2s, ... for fixed numbers 
a and s (the span of the lattice). It appears that we can always 
arrange this without loss of generality. For example, if d(Xi) is 
finitely discretely distributed, then it certainly suffices that d(Xi) 
takes finitely many values in the rationals only. We assume that a 
and s do not depend on 0. 

Theorem B.]. Suppose that the Xi are iid and E l7,o d(Xi)13 
0(1) for every On -X 0 and 0?1 -+ Oo. Assume that 

v(0,0) = EV,,o[d(Xi)] is differentiable at (O,Oo) and U2 (f, 0) 

varv, o{d(Xi)} is continuous at (O, Oo). Finally, assume that the 
distribution of n11/2 t(X) under f (x; On, On) converges in law to 
the distribution of d(Xi) under (t, 0) =(0, Oo). Then (30) holds. 

The proof will be given elsewhere. 

APPENDIX C: CONDITIONAL INFERENCE IN 
EXAMPLE B OF SECTION 2 

Consistency and Asymptotic Normality Of OCMLE 

For simplicity and without loss of generality, we consider 
the case where the variance c2 is known and equal to 1, so 
0 = ,t. Thus X,. . ., Xn are iid N(0, 1). Let Zq -Zq7, be the 
nqn-order statistic where qn -+ q and nq,1 is an integer. Then 
data from X1Zqn = x can be generated by generating iid data 
Yi,- - -, Ynqn-1 from the density I(y < x)>(y - 0)/@D(x - 0) 
and then generating Ynq,, + 1, . , Yn iid from the density I(y > 
x)(y - 0)/{1 - - (x-0)} independently of the previous Yi. Thus 
the likelihood function is proportional to 

nqn-1 n - - 

J7 q$)(Yi - 0)/@(x - 0) q$%i 0)/{1 - P(x -0)}. 

(C.1) 
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Because the likelihood function is the product of the likelihood 
for two iid identified parametric models with common parameter 
0, it follows that the maximizer 6cMLE of (C.1) is consistent for 
0 for each fixed x. Because the convergence of 6CMLE to 0 is 
uniform in x for x in a neighborhood of Zq (0), we conclude that 
6cMLE is (unconditionally) consistent for 0. Now 6CMLE satisfies 
the conditional score equation 

'F(OcMLE, X(nq,)) 0, 
where X(j) is the jth-order statistic and 

nqn-1 

T(0, x) ___ 1 n E log 0 (X(j) -0)- (nqn -1) log (x -0) a0 
i=l1 

n 

+ E log q5(X() - 0) - (n - nqn) log( - (X- 0)) . (C.2) 
i=nqn+l1 

This implies that up to terms of 0(1/n), T(0, x) is approximated 
by 

n- E (X()-0)- ( q (x- 0). (C.3) 
-=1 

- 0)(I - - 

The approximation in (C.3) is obtained by adding X(nqn) - 0 and 
replacing nqn - 1 by nqn- 

By Taylor expansion of the score equation, we obtain 

n / (OCMLE - 0) = -nl / (0X(nqn))/'F(6,X(nqn)) (C.4) 

for H between 6cMLE and 0, where 'F is the derivative of T(0, x) 
with respect to 0. By HcMLE consistent for 0, we have, from (C.3), 
by a further expansion around 0, 

n m12T(0, X(nqn)) + op (1) 

n 

= n /2 (Xi - 0) - {q(l - q)}-12(zq)nl/2(Zq - zq (0)) 
i=l 

= n-1/2SO(0) - 7>9(0)r-2 (0)T5td (0) 

and @ (O, X(nqn)) A -iCeo (0), as required. 

Proof of (13)-(14) for rpp0St(&jX) in Example B of Section 3 

The posterior density for 0 based on the conditional model f 
(xIT = x; 0) with T = Zq = X(nqn) is, by (C.1), 

Hi=1 +(X(i) - i=nq+l ?b(X(i)-0)ir(0) 
x -(nqn-l)(X - 0){1 _ Onn(nqn+1)(x - 0)}1 

1 (C.5) 
I H 7nqn - (1X - 0) 11n q(X - 0)w(0) 

X CD-(nqn-l)(X - 0){1 -Dn-(nqn+l)(x - 0)}-1 dO 

For each x, we can use the Bernstein-von Mises theorem for in- 
dependent random variables to conclude that 

11|r( |X(l), . ,X(nqn-1) , X(nqn+l) I *.*.*. X(n) , X) 

- N(A(0,x),n-E (0,x))fl f 0, (C.6) 

where P, is the law f (xIT = x; 0), A (0, x) = 0?+(0, x)/i(0, x), 
and i(0,x) = varo{ f(0,x)IT = x}. Because the convergence in 
(C.6) is uniform for x in a neighborhood of zq(0), we conclude 
that for every sequence Xn + zq(0), 

- N(/\(0,vxr),rK1i(0,vxr))IIIX(nqn) =xn) A 0. 

This is sufficient to conclude that 

E(11 7r(. IX1, . X..X, X(.q,) ) 

-N (A (, X(nqn.))) n- 1i (f X(nqn))) 11 I IX(nq,, )) ? 
By dominated convergence, this gives 

I 17 (' |Xl,**, Xn, X(nqn)) 

- (N((O, X(nq )),Tv n l i(O(, X(nqn))) II - 0 

However, by (C.4), we can substitute HCMLE for A (H, X(nq,)) and 
ic>,e (0) for i(O, X(nq,)), concluding the proof. 

[Received January 1999. Revised November 1999.] 
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